The design and experimental measurements of the novel low-pressure thermal energy storage for the heating of electric vehicles

被引:0
作者
Libor Gschwandtner
机构
[1] Faculty of Mechanical Engineering,The Institute of Thermal Power Engineering
[2] Slovak University of Technology in Bratislava,undefined
关键词
Values of heating power; Driving range of electric vehicles; Thermal energy storage; Colligative properties of ionic solutions; Measurements on heating device under real-weather conditions;
D O I
10.1007/s41104-021-00098-x
中图分类号
学科分类号
摘要
This paper deals with the impact of heating on the driving range of battery electric vehicles (BEVs), as the energy from a car battery is used on both driving and heating of the car. The possible solution is the novel heating device with its own energy source—a low-pressure thermal energy storage. The use of an inner heat exchanger in this thermal energy storage makes the design of the whole heating device very simple and with the division of a high-pressure from a low-pressure part increases its safety. By adding some salts into water, it is possible to decrease the value of inner pressure (vapour pressure) in the thermal storage and to increase its storage capacity along with the conservation of good thermodynamic properties of the storage medium. In the conclusion, the measurement results of the heating device tested under real conditions are presented.
引用
收藏
页码:27 / 35
页数:8
相关论文
共 33 条
[1]  
Wehner U(2011)Neue Ansätze zur Klimatisierung von Elektrofahrzeugen ATZ 113 586-591
[2]  
Ackermann J(2013)Neue Ansätze zur Energieeffizienten Klimatisierung von Elektrofahrzeugen ATZ 115 480-485
[3]  
Ackermann J(2018)Traktionsbatterie als thermischer Speicher ATZ 120 66-71
[4]  
Brinkkötter C(2016)Progress in heat pump air conditioning systems for electric vehicles—a review Energies 113 396-402
[5]  
Priesel M(2011)Innenraumheizung von Hybrid- und Elektrofahrzeugen ATZ Automobiltech Z 19 34-39
[6]  
Steiner A(2014)Thermisches Gesamtkonzept und optimierte Klimaregelung ATZ Extra 27 971-1358
[7]  
Mimberg G(2017)A low-temperature thermodynamic model for the Na-K-Ca-Mg-Cl system incorporating new experimental heat capacities in KCl, MgC, and CaC solutions J Chem Eng Data 28 1325-930
[8]  
Weidmann F(1998)Thermodynamic properties of aqueous magnesium chloride solutions from 250 to 600 K and to 100 MPa J Phys Chem Ref Data 37 906-298
[9]  
Caldevilla A(1996)Aqueous solutions of the alkaline-earth metal chlorides at elevated temperatures. Isopiestic molalities and thermodynamic properties J Chem Thermodyn 26 271-38
[10]  
Qinghong P(2005)Vapor pressures and isopiestic molalities of concentrated CaC (aq), CaBr (aq), and NaCl (aq) to T=523 K J Chem Thermodyn 03 36-undefined