Recurrent neural network to predict hyperelastic constitutive behaviors of the skeletal muscle

被引:0
|
作者
Abbass Ballit
Tien-Tuan Dao
机构
[1] Univ. Lille,
[2] CNRS,undefined
[3] Centrale Lille,undefined
[4] UMR 9013,undefined
[5] LaMcube,undefined
[6] Laboratoire de Mécanique,undefined
[7] Multiphysique,undefined
[8] Multiéchelle,undefined
关键词
Deep learning; Recurrent neural networks; Finite element modeling; Hyperelastic laws; Skeletal muscle;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1177 / 1185
页数:8
相关论文
共 50 条
  • [21] Evaluation of artificial neural network modelling to predict torso muscle activity
    Nussbaum, MA
    Chaffin, DB
    ERGONOMICS, 1996, 39 (12) : 1430 - 1444
  • [22] Improved Modeling of Pneumatic Muscle Actuator Using Recurrent Neural Network
    Hosovsky, Alexander
    Mizakova, Jana
    Pitel', Jan
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 4019 - 4024
  • [23] Equilibrium-based convolution neural networks for constitutive modeling of hyperelastic materials
    Li, L. F.
    Chen, C. Q.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2022, 164
  • [24] A Recurrent Neural Network model to predict blood-brain barrier permeability
    Alsenan, Shrooq
    Al-Turaiki, Isra
    Hafez, Alaaeldin
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2020, 89
  • [25] Data-driven recurrent neural network model to predict the rate of penetration
    Alkinani, Husam H.
    Al-Hameedi, Abo Taleb T.
    Dunn-Norman, Shari
    UPSTREAM OIL AND GAS TECHNOLOGY, 2021, 7
  • [26] Parametric study of a Hill-type hyperelastic skeletal muscle model
    Lu, Y. T.
    Beldie, L.
    Walker, B.
    Richmond, S.
    Middleton, J.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2011, 225 (H5) : 437 - 447
  • [27] Molecular Dynamics Data-driven Hyperelastic Constitutive Modeling Using MLP, GR, and RBF Models of Artificial Neural Network
    Kim, Suhan
    Wang, Haolin
    Lee, Wonjoo
    An, Byeong Hyeok
    Kim, Yu Jeong
    Lee, Juho
    Shin, Hyunseong
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2023, 47 (01) : 49 - 57
  • [28] Introduction of a recurrent neural network constitutive description within an implicit gradient enhanced damage framework
    Stoecker, Julien Philipp
    Platen, Jakob
    Kaliske, Michael
    COMPUTERS & STRUCTURES, 2023, 289
  • [29] An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces
    Vilimek, Miloslav
    ACTA OF BIOENGINEERING AND BIOMECHANICS, 2014, 16 (03) : 119 - 127
  • [30] Research on inversion method of hyperelastic constitutive parameters of skeletal muscles based on simulation and intelligent algorithm
    Li Y.
    Sang J.
    Ao R.
    Ma Y.
    Wei X.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (05): : 1449 - 1456