Renyi entropy for local quenches in 2D CFT from numerical conformal blocks

被引:0
作者
Yuya Kusuki
Tadashi Takayanagi
机构
[1] Kyoto University,Center for Gravitational Physics, Yukawa Institute for Theoretical Physics (YITP)
[2] University of Tokyo,Kavli Institute for the Physics and Mathematics of the Universe
来源
Journal of High Energy Physics | / 2018卷
关键词
AdS-CFT Correspondence; Conformal Field Theory; Field Theories in Lower Dimensions;
D O I
暂无
中图分类号
学科分类号
摘要
We study the time evolution of Renyi entanglement entropy for locally excited states in two dimensional large central charge CFTs. It generically shows a logarithmical growth and we compute the coefficient of log t term. Our analysis covers the entire parameter regions with respect to the replica number n and the conformal dimension hO of the primary operator which creates the excitation. We numerically analyse relevant vacuum conformal blocks by using Zamolodchikov’s recursion relation. We find that the behavior of the conformal blocks in two dimensional CFTs with a central charge c, drastically changes when the dimensions of external primary states reach the value c/32. In particular, when hO ≥ c/32 and n ≥ 2, we find a new universal formula ΔSAn≃nc24n−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varDelta {S}_A^{(n)}\simeq \frac{nc}{24\left(n-1\right)} $$\end{document} log t. Our numerical results also confirm existing analytical results using the HHLL approximation.
引用
收藏
相关论文
共 153 条
[1]  
Bombelli L(1986)A Quantum Source of Entropy for Black Holes Phys. Rev. D 34 373-undefined
[2]  
Koul RK(1993)Entropy and area Phys. Rev. Lett. 71 666-undefined
[3]  
Lee J(1994)Geometric and renormalized entropy in conformal field theory Nucl. Phys. B 424 443-undefined
[4]  
Sorkin RD(2004)Entanglement entropy and quantum field theory J. Stat. Mech. 0406 060-undefined
[5]  
Srednicki M(2013)Thermodynamical Property of Entanglement Entropy for Excited States Phys. Rev. Lett. 110 020-undefined
[6]  
Holzhey C(2013)Relative Entropy and Holography JHEP 08 126010-undefined
[7]  
Larsen F(2013)Entanglement Temperature and Entanglement Entropy of Excited States JHEP 12 118-undefined
[8]  
Wilczek F(2016) 1 + 1 J. Stat. Mech. 1606 111602-undefined
[9]  
Calabrese P(2010)Entanglement Renyi entropies in holographic theories Phys. Rev. D 82 147-undefined
[10]  
Cardy JL(2014)Universal Spectrum of 2d Conformal Field Theory in the Large c Limit JHEP 09 150-undefined