Computational issues in parameter estimation for stationary hidden Markov models

被引:0
|
作者
Jan Bulla
Andreas Berzel
机构
[1] Georg-August-Universität Göttingen,Institute for Statistics and Econometrics/Center for Statistics
来源
Computational Statistics | 2008年 / 23卷
关键词
Computational methods; Confidence intervals; EM algorithm; Hybrid algorithm; Initial conditions; Newton-type algorithm; Parameterization; Stationary hidden Markov model;
D O I
暂无
中图分类号
学科分类号
摘要
The parameters of a hidden Markov model (HMM) can be estimated by numerical maximization of the log-likelihood function or, more popularly, using the expectation–maximization (EM) algorithm. In its standard implementation the latter is unsuitable for fitting stationary hidden Markov models (HMMs). We show how it can be modified to achieve this. We propose a hybrid algorithm that is designed to combine the advantageous features of the two algorithms and compare the performance of the three algorithms using simulated data from a designed experiment, and a real data set. The properties investigated are speed of convergence, stability, dependence on initial values, different parameterizations. We also describe the results of an experiment to assess the true coverage probability of bootstrap-based confidence intervals for the parameters.
引用
收藏
页码:1 / 18
页数:17
相关论文
共 50 条
  • [1] Computational issues in parameter estimation for stationary hidden Markov models
    Bulla, Jan
    Berzel, Andreas
    COMPUTATIONAL STATISTICS, 2008, 23 (01) : 1 - 18
  • [2] Computational issues in parameter estimation for hidden Markov models with template model builder
    Bacri, Timothee
    Berentsen, Geir D.
    Bulla, Jan
    Stove, Bard
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (18) : 3421 - 3457
  • [3] STATIONARY DISTRIBUTION ESTIMATION IN HIDDEN MARKOV MODELS
    Dorea, C. C. Y.
    Gilardoni, G. L.
    Goncalves, C. R.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2005, 5 (02) : 183 - 195
  • [4] Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Dean, Thomas A.
    Singh, Sumeetpal S.
    Jasra, Ajay
    Peters, Gareth W.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 970 - 987
  • [5] Parameter estimation in pair-hidden Markov models
    Arribas-Gil, Ana
    Gassiat, Elisabeth
    Matias, Catherine
    SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (04) : 651 - 671
  • [6] Hidden Markov time series models: Some computational issues
    Zucchini, W
    MacDonald, IL
    DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 157 - 163
  • [7] Parameter estimation for hidden Markov chains
    Archer, GEB
    Titterington, DM
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 108 (1-2) : 365 - 390
  • [8] Almost sure parameter estimation and convergence rates for hidden Markov models
    Elliott, RJ
    Moore, JB
    SYSTEMS & CONTROL LETTERS, 1997, 32 (04) : 203 - 207
  • [9] Simulated annealing for maximum A Posteriori parameter estimation of hidden Markov models
    Andrieu, C
    Doucet, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) : 994 - 1004
  • [10] Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Elena Ehrlich
    Ajay Jasra
    Nikolas Kantas
    Methodology and Computing in Applied Probability, 2015, 17 : 315 - 349