No entropy enigmas for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = 4 $$\end{document} dyons

被引:0
作者
Atish Dabholkar
Monica Guica
Sameer Murthy
Suresh Nampuri
机构
[1] Université Pierre et Marie Curie-Paris 6,Laboratoire de Physique Théorique et Hautes Energies (LPTHE)
[2] CNRS UMR 7589,Department of Theoretical Physics
[3] Tata Institute of Fundamental Research,Arnold Sommerfeld Centre for Theoretical Physics
[4] Ludwig-Maximilians-Universität München,undefined
[5] Department für Physik,undefined
关键词
Black Holes in String Theory; String Duality; D-branes;
D O I
10.1007/JHEP06(2010)007
中图分类号
学科分类号
摘要
We explain why multi-centered black hole configurations where at least one of the centers is a large black hole do not contribute to the indexed degeneracies in theories with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = 4 $$\end{document} supersymmetry. This is a consequence of the fact that such configurations, although supersymmetric, belong to long supermultiplets. As a result, there is no entropy enigma in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = 4 $$\end{document} theories, unlike in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = 2 $$\end{document} theories.
引用
收藏
相关论文
共 82 条
  • [1] Denef F(2007)How many black holes fit on the head of a pin? Gen. Rel. Grav. 39 1539-undefined
  • [2] Moore GW(1997)Counting dyons in N = 4 string theory Nucl. Phys. B 484 543-undefined
  • [3] Dijkgraaf R(2006)New connections between 4D and 5D black holes JHEP 02 024-undefined
  • [4] Verlinde EP(2006)Recounting dyons in N = 4 string theory JHEP 10 087-undefined
  • [5] Verlinde HL(2007)Dyon spectrum in generic N = 4 supersymmetric Z(N) orbifolds JHEP 01 016-undefined
  • [6] Gaiotto D(2006)Dyon spectrum in N = 4 supersymmetric type-II string theories JHEP 11 073-undefined
  • [7] Strominger A(2006)Product representation of dyon partition function in CHL models JHEP 06 064-undefined
  • [8] Yin X(2006)Dyon spectrum in CHL models JHEP 04 018-undefined
  • [9] Shih D(2008)Black hole entropy function, attractors and precision counting of microstates Gen. Rel. Grav. 40 2249-undefined
  • [10] Strominger A(2008)Degeneracy of decadent dyons JHEP 03 026-undefined