Geophysical Constraints on Decarbonized Systems—Building Spatio-Temporal Uncertainties into Future Electricity Grid Planning

被引:3
作者
Chowdhury A.K. [1 ]
Wild T. [1 ,2 ]
Deshmukh R. [3 ,4 ]
Iyer G. [2 ]
Galelli S. [5 ]
机构
[1] Earth System Science Interdisciplinary Center, University of Maryland, College Park, 20740, MD
[2] Joint Global Change Research Institute (JGCRI), Pacific Northwest National Laboratory (PNNL), College Park, 20740, MD
[3] Environmental Studies Program, University of California Santa Barbara, Santa Barbara, 93106, CA
[4] Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, 93106, CA
[5] School of Civil and Environemntal Engineering, Cornell University, Ithaca, 14853, NY
来源
Current Sustainable/Renewable Energy Reports | 2023年 / 10卷 / 04期
基金
美国国家科学基金会;
关键词
Decarbonization; Geophysical constraints; Land and space; Minerals and materials; Power grid; Weather and climate;
D O I
10.1007/s40518-023-00229-y
中图分类号
学科分类号
摘要
Purpose of Review: Future electricity grids will be characterized by the high penetration of renewables to support the decarbonization process. Yet, this transition will further expose grids to a broad spectrum of geophysical forces, such as weather and climate or the availability of land and minerals. Here, we synthesize the current body of knowledge on the relationship between geophysical constraints and electricity grid planning. Recent Findings: We show that there have been promising advances in the data, methods, and modelling tools needed to incorporate the effect of geophysical constraints on demand, resource availability, and grid operations. However, current research efforts are typically focused on the effect of a single constraint, thereby lacking a broader view of the problem. Summary: More system-specific and finer-scale analyses are necessary to better understand how spatio-temporal variability in geophysical forces affects grid planning. Moreover, we need a broader focus on the multi-sectoral implications of decarbonization efforts, including the societal consequences of grid management decisions. Importantly, all these efforts are challenged by the computational requirements of existing power system models, which often limit our ability to characterize uncertainty and scale analyses across larger domains. © 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
引用
收藏
页码:218 / 233
页数:15
相关论文
共 184 条
[11]  
Bistline J., Abhyankar N., Blanford G., Clarke L., Fakhry R., McJeon H., Reilly J., Roney C., Wilson T., Yuan M., Zhao A., Actions for reducing US emissions at least 50% by 2030, Science, 376, 6596, pp. 922-924, (2022)
[12]  
Yalew S.G., Vliet M.T.H., Gernaat D.E.H.J., Ludwig F., Miara A., Park C., Byers E., de Cian E., Piontek F., Iyer G., Mouratiadou I., Glynn J., Hejazi M., Dessens O., Rochedo P., Pietzcker R., Schaeffer R., Fujimori S., Dasgupta S., Mima S., Silva S.R.S., Chaturvedi V., Vautard R., Vuuren D.P., Impacts of climate change on energy systems in global and regional scenarios, Nat Energy, 5, 10, pp. 794-802, (2020)
[13]  
Gupta A., Davis M., Kumar A., An integrated assessment framework for the decarbonization of the electricity generation sector, Appl Energy, 288, (2021)
[14]  
Fodstad M., Granado P., Hellemo L., Knudsen B.R., Pisciella P., Silvast A., Bordin C., Schmidt S., Straus J., Next frontiers in energy system modelling: A review on challenges and the state of the art, Renew Sustain Energy Rev, 160, (2022)
[15]  
Guzovic Z., Duic N., Piacentino A., Markovska N., Mathiesen B.V., Lund H., Recent advances in methods, policies and technologies at sustainable energy systems development, Energy, 245, (2022)
[16]  
Moglen R., Chawla K.P., Levi P., Sun Y., Phillips O., Leibowicz B.D., Jenkins J.D., Grubert E.A., The state of macro-energy systems research: Common critiques, current progress, and research priorities, Iscience, 26, 4, (2023)
[17]  
Kriegler E., Luderer G., Bauer N., Baumstark L., Fujimori S., Popp A., Rogelj J., Strefler J., Vuuren D.P., Pathways limiting warming to 1.5 ∘ C: A tale of turning around in no time?, Phil Trans R Soc a Math Phys Eng Sci, 376, 2119, (2018)
[18]  
Rogelj J., Popp A., Calvin K.V., Luderer G., Emmerling J., Gernaat D., Fujimori S., Trefler J., Hasegawa T., Marangoni G., Krey V., Kriegler E., Riah K., Vuuren D.P., Doelman J., Drouet L., Edmonds J., Fricko O., Harmsen M., Havlik P., Humpenoder F., Stehfest E., Tavoni M., Scenarios towards limiting global mean temperature increase below 1.5 ∘ C, Nat Clim Chang., 8, 4, pp. 325-332, (2018)
[19]  
Marvel K., Kravitz B., Caldeira K., Geophysical limits to global wind power, Nat Clim Chang, 3, 2, pp. 118-121, (2013)
[20]  
Adeh E.H., Good S.P., Calaf M., Higgins C.W., Solar P.V., Power potential is greatest over croplands, Sci Rep, 9, 1, (2019)