Asymptotic behavior of solutions to a boundary value problem with mixed boundary conditions and friction law

被引:0
|
作者
Djamila Benterki
Hamid Benseridi
Mourad Dilmi
机构
[1] Bordj Bou Arreridj University,Department of Mathematics
[2] Setif 1 University,Applied Math Lab, Department of Mathematics
来源
Boundary Value Problems | / 2017卷
关键词
asymptotic approach; Bingham fluid; coupled problem; Fourier law; Tresca law; variational inequality; weak solution; 35R35; 76F10; 78M35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a non-linear problem in a stationary regime in a three-dimensional thin domain Ωε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega^{\varepsilon}$\end{document} with Fourier and Tresca boundary conditions. In the first step, we derive a variational formulation of the mechanical problem. We then study the asymptotic behavior in the one dimension case when the domain parameter tends to zero. In the latter case, a specific Reynolds equation associated with variational inequalities is obtained and the uniqueness of the limit velocity and pressure are proved.
引用
收藏
相关论文
共 50 条