A matrix approach for constructing quadratic APN functions

被引:0
|
作者
Yuyin Yu
Mingsheng Wang
Yongqiang Li
机构
[1] Chinese Academy of Sciences,The State Key Laboratory of Information Security, Institute of Information Engineering
来源
Designs, Codes and Cryptography | 2014年 / 73卷
关键词
Quadratic functions; APN; EA-equivalence; CCZ-equivalence; 06E30; 11T06; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
A one to one correspondence is given between quadratic homogeneous APN functions and a special kind of matrices which we call as QAM’s. By modifying the elements of a known QAM, new quadratic APN functions can be constructed. Based on the nice mathematical structures of the QAM’s, an efficient algorithm for constructing quadratic APN functions is proposed. On F27\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^7}$$\end{document}, we have found 471 new CCZ-inequivalent quadratic APN functions, which is 20 times more than the number of the previously known ones. Before this paper, It is only found 23 classes of CCZ-inequivalent APN functions on F28\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^8}$$\end{document}. With the method of this paper, we have found 2,252 new CCZ-inequivalent quadratic APN functions, and this number is still increasing.
引用
收藏
页码:587 / 600
页数:13
相关论文
共 50 条
  • [1] A matrix approach for constructing quadratic APN functions
    Yu, Yuyin
    Wang, Mingsheng
    Li, Yongqiang
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (02) : 587 - 600
  • [2] On the equivalence of quadratic APN functions
    Carl Bracken
    Eimear Byrne
    Gary McGuire
    Gabriele Nebe
    Designs, Codes and Cryptography, 2011, 61 : 261 - 272
  • [3] On the equivalence of quadratic APN functions
    Bracken, Carl
    Byrne, Eimear
    McGuire, Gary
    Nebe, Gabriele
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 61 (03) : 261 - 272
  • [4] Constructing more quadratic APN functions with the QAM method
    Yu, Yuyin
    Perrin, Leo
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (06): : 1359 - 1369
  • [5] Equivalences of quadratic APN functions
    Yoshiara, Satoshi
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 35 (03) : 461 - 475
  • [6] Equivalences of quadratic APN functions
    Satoshi Yoshiara
    Journal of Algebraic Combinatorics, 2012, 35 : 461 - 475
  • [7] On equivalence between known families of quadratic APN functions
    Budaghyan, Lilya
    Calderini, Marco
    Villa, Irene
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 66
  • [8] On a construction of quadratic APN functions
    Budaghyan, Lilya
    Carlet, Claude
    Leander, Gregor
    2009 IEEE INFORMATION THEORY WORKSHOP (ITW 2009), 2009, : 374 - 378
  • [9] Constructing New APN Functions Through Relative Trace Functions
    Zheng, Lijing
    Kan, Haibin
    Li, Yanjun
    Peng, Jie
    Tang, Deng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (11) : 7528 - 7537
  • [10] Trims and extensions of quadratic APN functions
    Christof Beierle
    Gregor Leander
    Léo Perrin
    Designs, Codes and Cryptography, 2022, 90 : 1009 - 1036