Projections in normed linear spaces and sufficient enlargements
被引:0
作者:
M.I. Ostrovskii
论文数: 0引用数: 0
h-index: 0
机构:Mathematical Division,
M.I. Ostrovskii
机构:
[1] Mathematical Division,
[2] Institute for Low Temperature Physics,undefined
[3] 47 Lenin Avenue,undefined
[4] 310164 Kharkov,undefined
[5] Ukraine,undefined
来源:
Archiv der Mathematik
|
1998年
/
71卷
关键词:
Banach Space;
Euclidean Space;
Linear Space;
Unit Ball;
Normed Space;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Abstract. D e f i n i t i o n . A symmetric with respect to 0 bounded closed convex set A in a finite dimensional normed space X is called a sufficient enlargement for X (or of B(X)) if for arbitrary isometric embedding of X into a Banach space Y there exists a projection \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$P:Y\to X$\end{document} such that P(B(Y)) \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\subset$\end{document} A (by B we denote the unit ball). ¶The notion of sufficient enlargement is implicit in the paper: B. Grünbaum, Projection constants, Trans. Amer. Math. Soc. 95, 451 - 465 (1960). It was explicitly introduced by the author in: M. I. Ostrovskii, Generalization of projection constants: sufficient enlargements, Extracta Math. 11, 466 - 474 (1996). ¶The main purpose of the present paper is to continue investigation of sufficient enlargements started in the papers cited above. In particular the author investigate sufficient enlargements whose support functions are in some directions close to those of the unit ball of the space, sufficient enlargements of minimal volume, sufficient enlargements for euclidean spaces.