Restricted Mean Survival Time Estimation: Nonparametric and Regression Methods

被引:0
作者
Joseph C. Gardiner
机构
[1] Michigan State University,Department of Epidemiology and Biostatistics
来源
Journal of Statistical Theory and Practice | 2021年 / 15卷
关键词
Regression analysis; Survival analysis; Pseudo-observations; Inverse probability of censoring weights; 62G05; 62N02; 62P10;
D O I
暂无
中图分类号
学科分类号
摘要
In survival analyses, the log-rank test is the standard approach to comparison of survival distributions estimated from independent groups. The semiparametric proportional hazards model uses the hazard function as the conduit to assess the influence of covariates x on the survival distribution of an event time T. The accelerated failure time model aligned closely to standard linear regression can estimate summary features such as the mean and percentiles of the survival distribution as functions of x. However, a full specification of a parametric distribution is often needed to analyze a model for E(logT|x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E(\log T|{\mathbf{x}}) $$\end{document}. A different approach is to model the restricted mean survival time E(min(T,τ)|x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E(\hbox{min} (T,\tau )|{\mathbf{x}}) $$\end{document}. The specified time horizon τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau $$\end{document} is informed by applications. All approaches must account for censoring in event times. We review analyses for restricted mean survival time based on the method of inverse-probability of censoring weighting, and on pseudo observations and a discussion on specified parametric models. As illustration, we apply the methods to a data set on relapse-free survival time in patients who underwent bone marrow transplantation.
引用
收藏
相关论文
共 51 条
[1]  
Royston P(2013)Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome BMC Med Res Methodol 15 222-233
[2]  
Parmar MKB(2014)Predicting the restricted mean event time with the subject’s baseline covariates in survival analysis Biostatistics 10 335-350
[3]  
Tian L(2004)Regression analysis of restricted mean survival time based on pseudo-observations Lifetime Data Anal 27 4340-4358
[4]  
Zhao LH(2008)Reduced-rank proportional hazards regression and simulation-based prediction for multi-state models Stat Med 8 619-652
[5]  
Wei LJ(2014)Fitting heavy-tailed distributions to health care data by parametric and bayesian methods J Stat Theory Pract 141 1281-1301
[6]  
Andersen PK(2007)Inverse probability weighted estimation for general missing data problems J Econom 66 1133-1145
[7]  
Hansen MG(1997)Calculation of Gauss–Kronrod quadrature rules Math Comput 19 71-99
[8]  
Klein JP(2010)Pseudo-observations in survival analysis Stat Methods Med Res 24 176-199
[9]  
Fiocco M(2018)Modeling restricted mean survival time under general censoring mechanisms Lifetime Data Anal 15 241-255
[10]  
Putter H(2020)Restricted mean survival time for interval-censored data Stat Med 61 223-229