Existence and multiplicity of positive solutions for a class of fractional differential equations with three-point boundary value conditions

被引:0
作者
Bingxian Li
Shurong Sun
Ping Zhao
Zhenlai Han
机构
[1] University of Jinan,School of Mathematical Sciences
[2] University of Jinan,School of Control Science and Engineering
来源
Advances in Difference Equations | / 2015卷
关键词
fractional differential equations; three-point boundary value problem; existence and multiplicity; fixed point theorem; positive solution; 34A08; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the nonlinear three-point boundary value problem of fractional differential equations D0+αu(t)+a(t)f(t,u(t))=0,0<t<1,2<α≤3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{\alpha}_{0^{+}}u(t)+a(t)f\bigl(t,u(t)\bigr)=0, \quad 0< t< 1, 2< \alpha\leq3, $$\end{document} with boundary conditions u(0)=0,D0+βu(0)=0,D0+βu(1)=bD0+βu(ξ),1≤β≤2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(0)=0,\qquad D^{\beta}_{0^{+}}u(0)=0,\qquad D^{\beta}_{0^{+}}u(1)=bD^{\beta}_{0^{+}}u( \xi),\quad 1\leq\beta\leq2, $$\end{document} involving Riemann-Liouville fractional derivatives D0+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha}_{0^{+}}$\end{document} and D0+β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\beta}_{0^{+}}$\end{document}, where a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a(t)$\end{document} maybe singular at t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=0$\end{document} or t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=1$\end{document}. We use the Banach contraction mapping principle and the Leggett-Williams fixed point theorem to obtain the existence and uniqueness of positive solutions and the existence of multiple positive solutions. We investigate the above fractional differential equations without many preconditions by the fixed point index theory and obtain the existence of a single positive solution. Some examples are given to show the applicability of our main results.
引用
收藏
相关论文
共 32 条
[1]  
Ahmad B(2014)On higher-order sequential fractional differential inclusions with nonlocal three-point boundary conditions Abstr. Appl. Anal. 2014 495-505
[2]  
Ntouyas SK(2005)Positive solutions for boundary value problem of nonlinear fractional equation J. Math. Anal. Appl. 311 916-924
[3]  
Bai Z(2006)Positive solutions for boundary value problems of nonlinear fractional differential equations Electron. J. Differ. Equ. 2006 2820-2827
[4]  
Lü H(2014)Some new versions of fractional boundary value problems with slit-strips conditions Bound. Value Probl. 2014 329-336
[5]  
Zhang S(2010)On positive solutions of a nonlocal fractional boundary value problem Nonlinear Anal. 72 858-866
[6]  
Ahmad B(2014)Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter Commun. Nonlinear Sci. Numer. Simul. 19 1363-1375
[7]  
Agarwal RP(2012)Riemann-Liouville fractional differential equations with fractional boundary conditions Fixed Point Theory 13 243-248
[8]  
Bai Z(2013)A sum operator method for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems Commun. Nonlinear Sci. Numer. Simul. 18 958-964
[9]  
Zhai C(2010)Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations Comput. Math. Appl. 59 1487-1493
[10]  
Xu L(2014)A class of differential equations of fractional order with multi-point boundary conditions Georgian Math. J. 21 undefined-undefined