Identification of differentially expressed genes by means of outlier detection

被引:0
作者
Itziar Irigoien
Concepción Arenas
机构
[1] University of the Basque Country UPV/EHU,Department of Computation Science and Artificial Intelligence
[2] Department of Genetics,undefined
[3] Microbiology and Statistics,undefined
[4] University of Barcelona,undefined
来源
BMC Bioinformatics | / 19卷
关键词
Differentially expressed gene; Multivariate statistics; Outlier; Quantile;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 118 条
[1]  
Quackenbush J(2006)Microarray analysis and tumor classification N Engl J Med 354 2463-72
[2]  
Tusher VG(2001)Significance analysis of microarrays applied to the ionizing radiation response Proc Natl Acad Sci U S A 90 5116-21
[3]  
Tibshirani R(2014)Empirical evaluation of consistency and accuracy of methods to detect differentially expressed genes based on microarray Comput Biol Med 46 1-10
[4]  
Chu G(2004)Linear models and empirical bayes methods for assessing differential expression in microarray experiments Stat Appl Genet Mol Biol 3 1-25
[5]  
Yang D(2015)Limma powers differential expression analyses for rna-sequencing and microarray studies Nucleic Acids Res 43 47-86
[6]  
Parrish RS(2004)Bioconductor: open software development for computational biology and bioinformatics Genome Biol 5 80-65
[7]  
Brock GN(2002)Empirical bayes methods and false discovery rates for microarrays Genet Epidemiol 23 70-300
[8]  
Smyth GK(2006)Microarray data analysis: from disarray to consolidation and consensus Nat Rev Genet 7 55-9
[9]  
Ritchie ME(1995)Controlling the false discovery rate: a practical and powerful approach to multiple testing J R Stat Soc B 57 289-8
[10]  
Phipson B(2006)Rat toxicogenomic study reveals analytical consistency across microarray platforms Nat Biotechnol 24 1162-17