Identification of differentially expressed genes by means of outlier detection

被引:0
作者
Itziar Irigoien
Concepción Arenas
机构
[1] University of the Basque Country UPV/EHU,Department of Computation Science and Artificial Intelligence
[2] Department of Genetics,undefined
[3] Microbiology and Statistics,undefined
[4] University of Barcelona,undefined
来源
BMC Bioinformatics | / 19卷
关键词
Differentially expressed gene; Multivariate statistics; Outlier; Quantile;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 118 条
  • [1] Quackenbush J(2006)Microarray analysis and tumor classification N Engl J Med 354 2463-72
  • [2] Tusher VG(2001)Significance analysis of microarrays applied to the ionizing radiation response Proc Natl Acad Sci U S A 90 5116-21
  • [3] Tibshirani R(2014)Empirical evaluation of consistency and accuracy of methods to detect differentially expressed genes based on microarray Comput Biol Med 46 1-10
  • [4] Chu G(2004)Linear models and empirical bayes methods for assessing differential expression in microarray experiments Stat Appl Genet Mol Biol 3 1-25
  • [5] Yang D(2015)Limma powers differential expression analyses for rna-sequencing and microarray studies Nucleic Acids Res 43 47-86
  • [6] Parrish RS(2004)Bioconductor: open software development for computational biology and bioinformatics Genome Biol 5 80-65
  • [7] Brock GN(2002)Empirical bayes methods and false discovery rates for microarrays Genet Epidemiol 23 70-300
  • [8] Smyth GK(2006)Microarray data analysis: from disarray to consolidation and consensus Nat Rev Genet 7 55-9
  • [9] Ritchie ME(1995)Controlling the false discovery rate: a practical and powerful approach to multiple testing J R Stat Soc B 57 289-8
  • [10] Phipson B(2006)Rat toxicogenomic study reveals analytical consistency across microarray platforms Nat Biotechnol 24 1162-17