Tensor Z-eigenvalue complementarity problems

被引:0
作者
Meilan Zeng
机构
[1] Hubei Engineering University,School of Mathematics and Statistics
来源
Computational Optimization and Applications | 2021年 / 78卷
关键词
Complementarity ; -eigenvalue; Semidefinite relaxation; Asymptotic convergence; Finite convergence; 15A18; 65K10; 90C22;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies tensor Z-eigenvalue complementarity problems. We formulate the tensor Z-eigenvalue complementarity problem as constrained polynomial optimization, and propose a semidefinite relaxation algorithm for solving the complementarity Z-eigenvalues of tensors. For every tensor that has finitely many complementarity Z-eigenvalues, we can compute all of them and show that our algorithm has the asymptotic and finite convergence. Numerical experiments indicate the efficiency of the proposed method.
引用
收藏
页码:559 / 573
页数:14
相关论文
共 50 条
  • [1] Chen Z(2016)A semismooth Newton method for tensor eigenvalue complementarity problem Comput. Opt. Appl. 65 109-126
  • [2] Qi L(2015)Generalized eigenvalue complementarity problem for tensors Mathematics 63 1-26
  • [3] Chen Z(2014)All real eigenvalues of symmetric tensors SIAM J. Matrix Anal. Appl. 35 1582-1601
  • [4] Yang Q(2005)Truncated K-moment problems in several variables J. Oper. Theory 54 189-226
  • [5] Ye L(2018)Tensor eigenvalue complementarity problems Math. Program Ser. A. 170 507-539
  • [6] Cui C(2012)A semidefinite approach for truncated K-moment problems Found. Comput. Math. 12 851-881
  • [7] Dai Y(2009)GloptiPoly 3: moments, optimization and semidefinite programming Optim. Methods Softw. 24 761-779
  • [8] Nie J(2012)Algebraic connectivity of an even uniform hypergraph J. Combinatorial Optim. 24 564-579
  • [9] Curto RE(2011)Shifted power method for computing tensor eigenpairs SIAM J. Matrix Anal. Appl. 32 1095-1124
  • [10] Fialkow LA(2001)Global optimization with polynomials and the problem of moments SIAM J. Optim. 11 796-817