Some fixed point results for (c)-mappings in Banach spaces

被引:0
作者
Sami Atailia
Najeh Redjel
Abdelkader Dehici
机构
[1] University of Souk-Ahras,Laboratory of Informatics and Mathematics
来源
Journal of Fixed Point Theory and Applications | 2020年 / 22卷
关键词
Fixed point; (; )-mapping; asymptotically regular; approximate fixed point sequence; closed convex subset; convergence; orthogonality; approximately symmetric; approximately symmetric; uniformly ; approximately symmetric; dual Banach space; uniformly convex Banach space in every direction; Primary 47H10; Secondary 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we solve two fixed point problems associated with the class of (c)-mappings. The first one is devoted to obtain the existence of fixed points for such mappings defined on weak⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {weak}^{\star }$$\end{document} closed bounded convex subsets of duals of separable Banach spaces when the orthogonality relation ⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\perp $$\end{document} is uniformly weak⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {weak}^{\star }$$\end{document} approximately symmetric. For the second problem, using the idea of R. Smarzewski (On firmly nonexpansive mappings, Proc. Am. Math. Soc 113(3):723–725,1991), we prove the existence of fixed points for such mappings which are defined on a finite union of weakly compact convex subsets of UCED (uniformly convex in every direction) Banach spaces.
引用
收藏
相关论文
共 39 条
[1]  
Alspach DE(1981)A fixed point free nonexpansive map Proc. Am. Math. Soc. 82 423-424
[2]  
Bae JS(1984)Fixed point theorem of generalized nonexpansive map J. Korean. Math. Soc. 21 233-248
[3]  
Birkhoff G(1935)Orthogonality in linear metric space Duke. Math. J. 1 169-172
[4]  
Bogin J(1976)A generalization of a fixed point theorem of Goebel Kirk Shimi. Can. Math. Bull. 9 7-12
[5]  
Browder FE(1965)Nonexpansive nonlinear operators in a Banach space Proc. Nat. Math. Acad. Sci USA 54 1041-1044
[6]  
Damai RG(2016)Uniformly Rotund In Every Direction (URED) Norm Int. J. Sci. Res. Publ. 6 74-83
[7]  
Bajracharya PM(2012)Fixed point theory for multivalued generalized nonexpansive mappings Appl. Anal. Discret. Math. 6 265-286
[8]  
García-Falset J(2011)Fixed point theory for a class of generalized nonexpansive mappings J. Math. Anal. Appl. 375 185-195
[9]  
Llorens-Fuster E(1973)A Fixed point theorem in uniformly convex spaces Boll. Union Math. I 67-75
[10]  
Moreno Gálves E(1966)Zum Prinzip der kintraktiven Abbildungen. Math. 30 251-258