Generalized Derivations of Hom–Lie Triple Systems

被引:0
|
作者
Jia Zhou
Liangyun Chen
Yao Ma
机构
[1] Jilin Agricultural University,College of Information Technology
[2] Northeast Normal University,School of Mathematics and Statistics
[3] University of Science and Technology of China,School of Mathematical Sciences
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2018年 / 41卷
关键词
Hom–Lie triple systems; Generalized derivations; Centroids; 17A75; 17B30; 17B70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give some properties of the generalized derivation algebra GDer(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GDer}(T)$$\end{document} of a Hom–Lie triple systems T. In particular, we prove that GDer(T)=QDer(T)+QC(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GDer}(T) = \mathrm{QDer}(T) + \mathrm{QC}(T)$$\end{document}, the sum of the quasiderivation algebra and the quasicentroid. We also prove that QDer(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{QDer}(T)$$\end{document} can be embedded as derivations in a larger Hom–Lie triple system. General results on centroids of Hom–Lie triple systems are also developed in this paper.
引用
收藏
页码:637 / 656
页数:19
相关论文
共 50 条
  • [21] ON LIE IDEALS AND GENERALIZED DERIVATIONS OF *-PRIME RINGS
    Huang, Shuliang
    Golbasi, Oznur
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (03) : 941 - 950
  • [22] Lie generalized derivations on bound quiver algebras
    Adrabi, Abderrahim
    Bennis, Driss
    Fahid, Brahim
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (05) : 1950 - 1965
  • [23] On Lie ideals and generalized (θ,φ)-derivations in prime rings
    Ashraf, M
    Ali, A
    Ali, S
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (08) : 2977 - 2985
  • [24] Lie Ideals and Generalized Derivations in Semiprime Rings
    De Filippis, Vincenzo
    Rehman, Nadeem Ur
    Ansari, Abu Zaid
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2015, 10 (02): : 45 - 54
  • [25] Generalized derivations and left multipliers on Lie ideals
    Dhara, Basudeb
    De Filippis, Vincenzo
    Sharma, Rajendra K.
    AEQUATIONES MATHEMATICAE, 2011, 81 (03) : 251 - 261
  • [26] Generalized derivations and left multipliers on Lie ideals
    Basudeb Dhara
    Vincenzo De Filippis
    Rajendra K. Sharma
    Aequationes mathematicae, 2011, 81 : 251 - 261
  • [27] Generalized derivations and some structure theorems for Lie algebras
    Dorado-Aguilar, E.
    Garcia-Delgado, R.
    Martinez-Sigala, E.
    Rodriguez-Vallarte, M. C.
    Salgado, G.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (02)
  • [28] Generalized near-derivations and their applications in Lie algebras
    Du, Yi-Qiu
    Wang, Yu
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (03): : 291 - 301
  • [29] Pair of Generalized Derivations and Lie Ideals in Prime Rings
    Dhara, Basudeb
    Ali, Asma
    Khan, Shahoor
    ALGEBRA AND ITS APPLICATIONS, ICAA 2014, 2016, 174 : 351 - 362
  • [30] Identities with generalized derivations on Lie ideals and Banach algebras
    Hermas, Abderrahman
    Oukhtite, Lahcen
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (04) : 627 - 636