Boundary Integral Operator for the Fractional Laplace Equation in a Bounded Lipschitz Domain

被引:0
作者
TongKeun Chang
机构
[1] Yonsei University,Department of Mathematics
来源
Integral Equations and Operator Theory | 2012年 / 72卷
关键词
Primary 45P05; Secondary 30E25; Boundary integral operator; layer potential; fractional Laplacian; bounded Lipschitz domain;
D O I
暂无
中图分类号
学科分类号
摘要
We study the boundary integral operator induced from fractional Laplace equation in a bounded Lipschitz domain. As an application, we study the boundary value problem of a fractional Laplace equation.
引用
收藏
页码:345 / 361
页数:16
相关论文
共 30 条
  • [1] Bogdan K.(1997)The boundary Harnack principle for the fractional Laplacian Studia Math 123 43-80
  • [2] Bogdan K.(1999)Potential theory for the α-stable Schrodinger operator on bounded Lipschitz domains Studia Math 133 53-92
  • [3] Byczkowski T.(1989)The method of layer potentials for the heat equation in Lipschitz cylinders Am. J. Math 111 339-379
  • [4] Brown R.M.(1990)The initial-Neumann problem for the heat equation in Lipschitz cylinders Trans. Am. Math. Soc. 320 1-52
  • [5] Brown R.M.(1998)Estimates on Green functions and Poisson kernels for symmetric stable processes Math. Ann. 312 465-501
  • [6] Chen Z.(1988)Boundary value problems for the systems of elastostatics in Lipschitz domains Duke Math. J. 57 109-135
  • [7] Song R.(1978)Potential techniques for boundary value problems on Acta Math. 141 165-186
  • [8] Dahlberg B.E.J.(1988)-domains Duke Math. J. 57 769-793
  • [9] Kenig C.E.(1998)The Dirichlet problem for the Stokes system on Lipschitz domains J. Funct. Anal. 159 323-368
  • [10] Verchota G.C.(1996)Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains Ann. Math. (2) 144 349-420