Fourier spectral approximation for generalized time fractional Burgers equation

被引:0
作者
Li Chen
Shujuan Lü
机构
[1] Beihang University,School of Mathematical Sciences
来源
Journal of Applied Mathematics and Computing | 2022年 / 68卷
关键词
Generalized time fractional Burgers equation; Fourier spectral method; Boundedness; Convergence; 35R11; 65M12; 65M70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a linearized fully discrete scheme is presented to solve the generalized time fractional Burgers equation. The proposed method is on the basis of finite difference method in time and Fourier spectral approximation in space. Based on a temporal-spatial error splitting argument, the boundedness of the solution and convergence of the numerical scheme are proved rigorously without the time step size condition dependent on the spatial mesh size. Numerical examples are given to illustrate the theoretical results.
引用
收藏
页码:3979 / 3997
页数:18
相关论文
共 63 条
[1]  
Sun ZZ(2006)A fully discrete difference scheme for a diffusion-wave system Appl. Numer. Math. 56 193-209
[2]  
Wu XN(2007)Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation Appl. Math. Comput. 191 12-20
[3]  
Liu F(2011)A compact finite difference scheme for the fractional sub-diffusion equations J. Comput. Phys. 230 586-595
[4]  
Zhuang P(2011)Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion Comput. Math. Appl. 62 855-875
[5]  
Anh V(2011)Finite element approximation for a modified anomalous subdiffusion equation Appl. Math. Model. 35 4103-4116
[6]  
Turner I(2013)Error estimates for a semidiscrete finite element method for fractional order parabolic equations SIAM J. Numer. Anal. 51 445-466
[7]  
Burrage K(2007)Finite difference/spectral approximations for the time-fractional diffusion equation J. Comput. Phys. 225 1533-1552
[8]  
Gao GH(2016)Spectral methods for the time fractional diffusion-wave equation in a semi-infinite channel Comput. Math. Appl. 71 1818-1830
[9]  
Sun ZZ(2019) scheme on graded mesh for the linearized time fractional KdV equation with initial singularity Int. J. Model. Simul. Sci. Comput. 10 1941006-1317
[10]  
Li CP(2014)A second order finite difference-spectral method for space fractional diffusion equation Sci. China Math. 57 1303-170