The Embedding Flow of 3-Dimensional Locally Hyperbolic C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document} Diffeomorphisms

被引:0
|
作者
Xiang Zhang
机构
[1] Shanghai Jiao Tong University,Department of Mathematics, and MOE
关键词
3-Dimensional local diffeomorphism; Weak resonance; Hyperbolicity; smoothness; Embedding flow; 34A34; 34C20; 34C41; 37G05;
D O I
10.1007/s10884-014-9417-7
中图分类号
学科分类号
摘要
For finite dimensional locally hyperbolic C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document} smooth real diffeomorphisms, the problem on the existence and smoothness of their embedding flows was solved by Li et al. (Am J Math 124:107–127, 2002) in the weakly non-resonant case. Whereas there are no general results on the existence of embedding flows in weakly resonant cases, except for some examples and some ones on the non-existence of embedding flows. The simplest hyperbolic diffeomorphisms having weakly resonant phenomena should be the 3-dimensional ones. This paper will concentrate on the embedding flow problem for this kind of diffeomorphisms. In one case we obtain complete characterization of the diffeomorphisms which admit embedding flows, and in the other cases we obtain some necessary conditions for the diffeomorphisms to have embedding flows. Also in this latter case we provide a sufficient condition for the existence of C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document} embedding flow. As we know it is the first general result on the existence of embedding flows for locally hyperbolic C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document} diffeomorphisms with weak resonance. These results show that the embedding flow problem in the weakly resonant case is much more involved.
引用
收藏
页码:29 / 54
页数:25
相关论文
共 13 条