Global Well-Posedness for the 2-D Inhomogeneous Incompressible Navier-Stokes System with Large Initial Data in Critical Spaces

被引:0
作者
Hammadi Abidi
Guilong Gui
机构
[1] Université de Tunis El Manar,Département de Mathématiques, Faculté des Sciences de Tunis
[2] Xiangtan University,School of Mathematics and Computational Science
[3] Northwest University,School of Mathematics
来源
Archive for Rational Mechanics and Analysis | 2021年 / 242卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Without any smallness assumption, we prove the global unique solvability of the 2-D incompressible inhomogeneous Navier-Stokes equations with initial data in the critical Besov space, which is almost the energy space in the sense that they have the same scaling in terms of this 2-D system.
引用
收藏
页码:1533 / 1570
页数:37
相关论文
共 5 条
  • [1] Kazhikov AV(1974)Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid, (Russian) Dokl Akad. Nauk SSSR 216 1008-1010
  • [2] Danchin R(2001)Local theory in critical spaces for compressible viscous and heat-conductive gases Comm. Partial Differ. Equ. 26 1183-1233
  • [3] Danchin R(2003)Density-dependent incompressible viscous fluids in critical spaces Proc. R. Soc. Edin. Sect. A 133 1311-1334
  • [4] Danchin R(2004)Local and global well-posedness resultats for flows of inhomogenenous viscous fluids Adv. Differ. Equ. 9 353-386
  • [5] Planchon F(2003)An extension of the Beale-Kato-Majda criterion for the Euler equations Comm. Math. Phys. 232 319-326