Continuity of the optimal value function in indefinite quadratic programming

被引:0
作者
Nguyen Nang Tam
机构
[1] Hanoi Pedagogical Institute II,Department of Mathematics
[2] Xuanhoa,undefined
[3] Melinh,undefined
来源
Journal of Global Optimization | 2002年 / 23卷
关键词
Quadratic programming problem; optimal value function; lower semicontinuity; upper semicontinuity; continuity;
D O I
暂无
中图分类号
学科分类号
摘要
This paper characterizes the continuity property of the optimal value function in a general parametric quadratic programming problem with linear constraints. The lower semicontinuity and upper semicontinuity properties of the optimal value function are studied as well.
引用
收藏
页码:43 / 61
页数:18
相关论文
共 18 条
[1]  
Auslender A.(1996)Sensitivity analysis for generalized linear-quadratic problems Journal of Optimization Theory and Applications 88 541-559
[2]  
Coutat P.(1984)Stability of mixed-integer quadratic programming problems Mathematical Programming Study 21 1-17
[3]  
Bank B.(1990)Stability of linearly constrained convex quadratic programs Journal of Optimization Theory and Applications 64 43-53
[4]  
Hansel R.(1995)On the continuity of minimum in parametric quadratic programs Journal of Optimization Theory and Applications 86 245-250
[5]  
Best M. J.(1972)Direct proof of the existence theorem for quadratic programming Operations Research 20 165-167
[6]  
Chakravarti N.(1985)On the Lipschitz behavior of optimal solutions in parametric problems of quadratic optimization and linear complementarity Optimization 16 819-831
[7]  
Best M. J.(1975)Stability theory for systems of inequalities. Part I: Linear systems SIAM Journal on Numerical Analysis 12 754-769
[8]  
Ding B.(1977)A characterization of stability in linear programming Operations Research 25 435-447
[9]  
Blum E.(1999)On continuity properties of the solution map in quadratic programming Acta Mathematica Vietnamica 24 47-61
[10]  
Oettli W.(1999)Continuity properties of the Karush-Kuhn-Tucker point set in quadratic programming problems Mathematical Programming, Series A 85 193-206