Note on two modular equations of Ramanujan

被引:0
作者
Dazhao Tang
机构
[1] Chongqing Normal University,School of Mathematical Sciences
来源
Indian Journal of Pure and Applied Mathematics | 2024年 / 55卷
关键词
Modular equations; Rogers–Ramanujan continued fraction; Dissections; Euler product; Theta series; 11B65; 11A55; 05A30; 14K25;
D O I
暂无
中图分类号
学科分类号
摘要
In his notebooks and lost notebook, Ramanujan recorded two modular equations involving the Rogers–Ramanujan continued fraction. These two modular equations were subsequently proved by several scholars. In this paper, we provide another proof for these two modular equations in terms of the 5-dissections of the Euler product f(-q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(-q)$$\end{document}, its reciprocal, and Ramanujan’s theta function ψ(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (q)$$\end{document}. As by-products, we also establish four q-series identities concerning some specialized Jacobi theta series.
引用
收藏
页码:47 / 53
页数:6
相关论文
共 7 条
[1]  
Chern S(2019)Partitions into distinct parts modulo powers of 5 Ann. Comb. 23 659-682
[2]  
Hirschhorn MD(2021)The Rogers-Ramanujan continued fraction and related eta-quotient representations Bull. Aust. Math. Soc. 103 248-259
[3]  
Chern S(2022)Vanishing coefficients and identities concerning Ramanujan’s parameters Ramanujan J. 57 1367-1385
[4]  
Tang D(2011)Ramanujan’s "most beautiful identity" Amer. Math. Monthly 118 839-845
[5]  
Chern S(undefined)undefined undefined undefined undefined-undefined
[6]  
Tang D(undefined)undefined undefined undefined undefined-undefined
[7]  
Hirschhorn MD(undefined)undefined undefined undefined undefined-undefined