Uniform Regularity in a Wedge and Regularity of Traces of CR Functions

被引:0
作者
Luca Baracco
Stefano Pinton
Tran Vu Khanh
机构
[1] Università di Padova,Dipartimento di Matematica
来源
Journal of Geometric Analysis | 2010年 / 20卷
关键词
Separately holomorphic functions; CR functions; Hyperfunctions; 32D10; 32U05; 32V25;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss in Sect. 1 the property of regularity at the boundary of separately holomorphic functions along families of discs and apply, in Sect. 2, to two situations. First, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{W}$\end{document} be a wedge of ℂn with Cω, generic edge ℰ: a holomorphic function f on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{W}$\end{document} has always a generalized (hyperfunction) boundary value bv(f) on ℰ, and this coincides with the collection of the boundary values along the discs which have Cω transversal intersection with ℰ. Thus Sect. 1 can be applied and yields the uniform continuity at ℰ of f when bv(f) is (separately) continuous. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{W}$\end{document} is only smooth, an additional property, the temperateness of f at ℰ, characterizes the existence of boundary value bv(f) as a distribution on ℰ. If bv(f) is continuous, this operation is consistent with taking limits along discs (Theorem 2.8). By Sect. 1, this yields again the uniform continuity at ℰ of tempered holomorphic functions with continuous bv. This is the theorem by Rosay (Trans. Am. Math. Soc. 297(1):63–72, 1986), in whose original proof the method of “slicing” by discs is not used.
引用
收藏
页码:996 / 1007
页数:11
相关论文
共 16 条
  • [1] Ajrapetyan R.(1981)Analytic continuation of CR functions through the “edge of the wedge” Dokl. Akad. Nauk SSSR 259 777-781
  • [2] Henkin G.(1983)Microlocal analyticity and extension of CR functions J. Differ. Geom. 18 331-391
  • [3] Baouendi S.(1981)A property of the functions and distributions annihilated by a locally integrable system of complex vector fields Ann. Math. (2) 114 387-421
  • [4] Chang C.H.(1984)About holomorphic extension of CR functions on real hypersurfaces in complex space Duke Math. J. 51 77-107
  • [5] Treves F.(2009)Separate real analyticity and CR extendibility Forum Math. 21 519-531
  • [6] Baouendi M.S.(2007)On the F. and M. Riesz theorem on wedges with edges of class Math. Z. 255 161-175
  • [7] Treves F.(1972)A local version of Bochner’s tube theorem J. Fac. Sci., Univ. Tokyo Sect. IA, Math. 19 201-214
  • [8] Baouendi M.S.(1986)A propos de “wedges” et d’“edges” et de prolongements holomorphes Trans. Am. Math. Soc. 297 63-72
  • [9] Treves F.(1969)Analyticity and separate analyticity of functions defined on lower dimensional subsets of ℂ Zesz. Nauk. Uniw. Jagiell., Pr. Mat. 13 53-70
  • [10] Baracco L.(undefined)undefined undefined undefined undefined-undefined