Pathogenesis of breast cancer. Implications of vitamin D metabolism

被引:0
作者
Diesing D. [1 ,2 ]
Tauchert S. [1 ]
Axt-Fliedner R. [1 ]
Hornung D. [1 ]
Diedrich K. [1 ]
Friedrich M. [1 ]
机构
[1] Klin. Frauenheilkunde/Geburtshilfe, Univ. Klin. Schleswig-Holstein, Campus Lübeck, Lübeck
[2] Klin. Frauenheilkunde/Geburtshilfe, Univ. Klin. Schleswig-Holstein, Campus Lübeck, 23538 Lübeck
来源
Der Gynäkologe | 2004年 / 37卷 / 3期
关键词
Antiproliferation; Breast cancer; VDR; Vitamin D; Vitamin D analogues;
D O I
10.1007/s00129-004-1492-0
中图分类号
学科分类号
摘要
Vitamin D3 (calcitriol) is a secosteroid hormone which has its main function in the regulation of calcium and phosphate homeostasis. Recent studies show that calcitriol has an additional antiproliferative effect on malignant cells and that it can induce the redifferentiation of these cells. Apart from the synthesis in the skin, calcitriol can be locally produced in malignant breast tissue via conversion of precursors by hydroxylases. The genomic effects of vitamin D are mediated by vitamin D-receptors (VDR). Amongst others vitamin D-response-elements can regulate genes which are involved in antiproliferation or differentiation. The existence of a functioning VDR is indispensable for the response of the tumor to calcitriol and its analogues. Due to strong hypercalcemic side effects, the application of calcitriol for the treatment of malignancies has not been successful yet. However, the development of analogues with a dissociation of the antiproliferative effects from hypercalcemic side effects offers a large potential for the effective use of these drugs in oncology.
引用
收藏
页码:210 / 214
页数:4
相关论文
共 36 条
[1]  
Agadir A., Lazzaro G., Zheng Y., Zhang X.K., Mehta R., Resistance of HBL100 human breast epithelial cells to vitamin D action, Carcinogenesis, 20, pp. 577-582, (1999)
[2]  
Anzano M.A., Smith J.M., Uskokovic M.R., Et al., 1α-Dihydroxy-16-ene-23-yne-26,27-hexafluorochole-calciferol (Ro24-5531), a new deltanoid (vitamin D analogue) for prevention of breast cancer in the rat, Cancer Res, 54, pp. 1653-1656, (1994)
[3]  
Boland R., De Boland A.R., Buitrago C., Et al., Non-genomic stimulation of tyrosine phosphorylation cascades by 1,25(OH)(2)D<sub>3</sub> by VDR-dependent and -independent mechanisms in muscle cells, Steroids, 67, pp. 477-482, (2002)
[4]  
Bratland A., Risberg K., Maelandsmo G.M., Et al., Expression of a novel factor, com1, is regulated by 1, 25-dihydroxyvitamin D<sub>3</sub> in breast cancer cells, Cancer Res, 60, pp. 5578-5583, (2000)
[5]  
Cho Y.L., Christensen C., Saunders D.E., Lawrence W.D., Deppe G., Malviya V.K., Malone J.M., Combined effects of 1,25-dihydroxyvitamin D<sub>3</sub> and platinum drugs on the growth of MCF-7 cells, Cancer Res, 51, pp. 2848-2853, (1991)
[6]  
Colston K.W., Berger U., Coombes R.C., Possible role for vitamin D in controlling breast cancer cell proliferation, Lancet, 1, pp. 185-191, (1989)
[7]  
Costa E.M., Feldman D., Homologous upregultaion of the 1,25-dihydroxyvitamin D <sub>3</sub>-receptor in rats, Biochem Biophys Res Commun, 137, pp. 742-747, (1986)
[8]  
Cross H.S., Peterlik M., Reddy G.S., Schuster I., Vitamin D-metabolism in human colon adenocarcinoma-derived Caco-2 cells: Expression of 25-hydroxyvitamin D<sub>3</sub>-1α-hydroxylase activity and regulation of side chain metabolism, J Steroid Biochem Mol Biol, 62, pp. 21-28, (1997)
[9]  
Elstner E., Linker-Israeli M., Umiel T., Et al., Combination of a potent 20-epi-vitamin D<sub>3</sub> analogue (KH 1060) with 9-cis-retinoic acid irreversibly inhibits clonal growth, decreases bcl-2 expression and induces apoptosis in HL-60 leukemic cells, Cancer Res, 56, pp. 3570-3576, (1996)
[10]  
Flanagan L., VanWeelden K., Ammerman C., Ethier S., Welsh J.E., SUM-1 S9PT cells, a novel estrogen independent human breast cancer model system, Breast Cancer Res Treat, 58, pp. 193-204, (1999)