Hodge Theory on Metric Spaces

被引:0
作者
Laurent Bartholdi
Thomas Schick
Nat Smale
Steve Smale
机构
[1] Georg-August-Universität,
[2] University of Utah,undefined
[3] City University of Hong Kong,undefined
来源
Foundations of Computational Mathematics | 2012年 / 12卷
关键词
Hodge theory; cohomology; Metric spaces; Harmonic forms; Medium-scale geometry; 58A14; 54E05; 55P55; 57M50;
D O I
暂无
中图分类号
学科分类号
摘要
Hodge theory is a beautiful synthesis of geometry, topology, and analysis which has been developed in the setting of Riemannian manifolds. However, spaces of images, which are important in the mathematical foundations of vision and pattern recognition, do not fit this framework. This motivates us to develop a version of Hodge theory on metric spaces with a probability measure. We believe that this constitutes a step toward understanding the geometry of vision.
引用
收藏
页码:1 / 48
页数:47
相关论文
共 47 条
  • [1] Carlsson G.(2009)Topology and data Bull. Am. Math. Soc. (N.S.) 46 255-308
  • [2] Carlsson G.(2008)On the local behavior of spaces of natural images Int. J. Comput. Vis. 76 1-12
  • [3] Ishkhanov T.(1986)-cohomology and group cohomology Topology 25 189-215
  • [4] de Silva V.(2006)Diffusion wavelets Appl. Comput. Harmon. Anal. 21 53-94
  • [5] Zomorodian A.(2002)The spectral measure of certain elements of the complex group ring of a wreath product Geom. Dedic. 93 121-137
  • [6] Cheeger J.(1976)Finite-difference approach to the Hodge theory of harmonic forms Am. J. Math. 98 79-104
  • [7] Gromov M.(1977)De Rham-Hodge theory for Topology 16 157-165
  • [8] Coifman R.R.(2003)-cohomology of infinite coverings Commun. Pure Appl. Math. 56 839-873
  • [9] Maggioni M.(1945)Approximating Comment. Math. Helv. 17 240-255
  • [10] Dicks W.(2002)-invariants and the Atiyah conjecture Discrete Comput. Geom. 28 511-533