Improving object segmentation by using EEG signals and rapid serial visual presentation

被引:0
作者
Eva Mohedano
Graham Healy
Kevin McGuinness
Xavier Giró-i-Nieto
Noel E. O’Connor
Alan F. Smeaton
机构
[1] Dublin City University,Insight Center for data Analytics
[2] Universitat Politcnica de Catalunya,Image Processing Group
来源
Multimedia Tools and Applications | 2015年 / 74卷
关键词
Brain-computer interfaces; Electroencephalography; Rapid serial visual presentation; Object segmentation; Interactive segmentation; GrabCut algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
This paper extends our previous work on the potential of EEG-based brain computer interfaces to segment salient objects in images. The proposed system analyzes the Event Related Potentials (ERP) generated by the rapid serial visual presentation of windows on the image. The detection of the P300 signal allows estimating a saliency map of the image, which is used to seed a semi-supervised object segmentation algorithm. Thanks to the new contributions presented in this work, the average Jaccard index was improved from 0.47 to 0.66 when processed in our publicly available dataset of images, object masks and captured EEG signals. This work also studies alternative architectures to the original one, the impact of object occupation in each image window, and a more robust evaluation based on statistical analysis and a weighted F-score.
引用
收藏
页码:10137 / 10159
页数:22
相关论文
共 70 条
[1]  
Bauer G(1979)Varieties of the locked-in syndrome J Neurol 221 77-91
[2]  
Gerstenbrand F(2008)Control of a humanoid robot by a noninvasive brain computer interface in humans J Neural Eng 16 432-441
[3]  
Rumpl E(2008)Brain activity-based image classification from rapid serial visual presentation IEEE Trans Neural Syst Rehabil Eng 16 432-441
[4]  
Bell CJ(2012)Bedside detection of awareness in the vegetative state: a cohort study Lancet 378 2088-2094
[5]  
Shenoy P(2010)The Pascal visual object classes (VOC) challenge Int J Comput Vis 88 303-338
[6]  
Chalodhorn R(2012)Bridging the semantic gap via functional brain imaging IEEE Trans Multimed 14 314-325
[7]  
Rao R(2011)A framework for rapid visual image search using single-trial brain evoked responses Neurocomputing 74 2041-2051
[8]  
Bigdely-Shamlo N(2011)Scikit-learn: Machine learning in Python J Mach Learn Res 12 2825-2830
[9]  
Vankov A(2013)Offline analysis of context contribution to erp-based typing bci performance J Neural Eng 10 432-441
[10]  
Ramirez R(2004)“GrabCut”: Interactive foreground extraction using iterated graph cuts ACM Trans Graph 23 309-314