On Certain Functional Equations on Standard Operator Algebras

被引:0
作者
Nadeem ur Rehman
Nejc Širovnik
Tarannum Bano
机构
[1] Aligarh Muslim University,Department of Mathematics
[2] University of Maribor,Department of Mathematics and Computer Science
[3] FNM,undefined
来源
Mediterranean Journal of Mathematics | 2017年 / 14卷
关键词
Prime ring; standard operator algebra; derivation; Jordan derivation; functional identity; 46K15; 16N60; 16W10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, functional equations related to derivations on semiprime rings and standard operator algebras are investigated. We prove the following result which is related to a classical result of Chernoff. Let X be a real or complex Banach space, let L(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}(X)$$\end{document} be the algebra of all bounded linear operators of X into itself and let A(X)⊂L(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}(X)\subset {\mathcal {L}}(X)$$\end{document} be a standard operator algebra. Suppose there exist linear mappings D,G:A(X)→L(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D, G:{\mathcal {A}}(X)\rightarrow {\mathcal {L}}(X)$$\end{document} satisfying the relations D(A2n+1)=D(A2n)A+A2nG(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(A^{2n+1})=D(A^{2n})A+A^{2n}G(A)$$\end{document} and G(A2n+1)=G(A2n)A+A2nD(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(A^{2n+1})=G(A^{2n})A+A^{2n}D(A)$$\end{document} for all A∈A(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in {\mathcal {A}}(X)$$\end{document}. Then there exists B∈L(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\in {\mathcal {L}}(X)$$\end{document} such that D(A)=G(A)=[A,B]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(A)=G(A)=[A,B]$$\end{document} for all A∈A(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in {\mathcal {A}}(X)$$\end{document}.
引用
收藏
相关论文
共 14 条
[1]  
Brešar M(1988)Jordan derivations on prime rings Bull. Austral. Math. Soc. 37 321-322
[2]  
Vukman J(1988)Jordan derivations on semiprime rings Proc. Am. Math. Soc. 104 1003-1006
[3]  
Brešar M(1989)Jordan mappings of semiprime rings J. Algebra 127 218-228
[4]  
Brešar M(1973)Representations, automorphisms and derivations of some operator algebras J. Funct. Anal. 2 275-289
[5]  
Chernoff PR(1975)Jordan derivations on rings Proc. Am. Math. Soc. 53 321-324
[6]  
Cusack J(1957)Jordan derivations of prime rings Proc. Am. Math. Soc. 8 1104-1119
[7]  
Herstein IN(1993)Ring derivations on standard operator algebras J. Funct. Anal. 112 318-324
[8]  
Šemrl P(2012)On functional equations related to derivations in semiprime rings and standard operator algebras Glasnik Mat. 47 95-104
[9]  
Širovnik N(1984)On automorphisms and derivations of operator algebras Glas Mat. 19 135-138
[10]  
Vukman J(2006)On derivations of algebras with involution Acta Math. Hungar. 112 181-186