DCGAN-DTA: Predicting drug-target binding affinity with deep convolutional generative adversarial networks

被引:1
|
作者
Kalemati, Mahmood [1 ]
Zamani Emani, Mojtaba [1 ]
Koohi, Somayyeh [1 ]
机构
[1] Sharif Univ Technol, Dept Comp Engn, Tehran, Iran
来源
BMC GENOMICS | 2024年 / 25卷 / 01期
关键词
Drug-target binding affinity; Deep convolutional generative adversarial networks; BLOSUM encoding; Adversarial control experiments; Straw models;
D O I
10.1186/s12864-024-10326-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background In recent years, there has been a growing interest in utilizing computational approaches to predict drug-target binding affinity, aiming to expedite the early drug discovery process. To address the limitations of experimental methods, such as cost and time, several machine learning-based techniques have been developed. However, these methods encounter certain challenges, including the limited availability of training data, reliance on human intervention for feature selection and engineering, and a lack of validation approaches for robust evaluation in real-life applications.Results To mitigate these limitations, in this study, we propose a method for drug-target binding affinity prediction based on deep convolutional generative adversarial networks. Additionally, we conducted a series of validation experiments and implemented adversarial control experiments using straw models. These experiments serve to demonstrate the robustness and efficacy of our predictive models. We conducted a comprehensive evaluation of our method by comparing it to baselines and state-of-the-art methods. Two recently updated datasets, namely the BindingDB and PDBBind, were used for this purpose. Our findings indicate that our method outperforms the alternative methods in terms of three performance measures when using warm-start data splitting settings. Moreover, when considering physiochemical-based cold-start data splitting settings, our method demonstrates superior predictive performance, particularly in terms of the concordance index.Conclusion The results of our study affirm the practical value of our method and its superiority over alternative approaches in predicting drug-target binding affinity across multiple validation sets. This highlights the potential of our approach in accelerating drug repurposing efforts, facilitating novel drug discovery, and ultimately enhancing disease treatment. The data and source code for this study were deposited in the GitHub repository, https://github.com/mojtabaze7/DCGAN-DTA. Furthermore, the web server for our method is accessible at https://dcgan.shinyapps.io/bindingaffinity/.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] MMPD-DTA: Integrating Multi-Modal Deep Learning with Pocket-Drug Graphs for Drug-Target Binding Affinity Prediction
    Wang, Guishen
    Zhang, Hangchen
    Shao, Mengting
    Sun, Shisen
    Cao, Chen
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, 65 (03) : 1615 - 1630
  • [32] NerLTR-DTA: drug-target binding affinity prediction based on neighbor relationship and learning to rank
    Ru, Xiaoqing
    Ye, Xiucai
    Sakurai, Tetsuya
    Zou, Quan
    BIOINFORMATICS, 2022, 38 (07) : 1964 - 1971
  • [33] GTAMP-DTA: Graph transformer combined with attention mechanism for drug-target binding affinity prediction
    Tian, Chuangchuang
    Wang, Luping
    Cui, Zhiming
    Wu, Hongjie
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 108
  • [34] GraphCL-DTA: A Graph Contrastive Learning With Molecular Semantics for Drug-Target Binding Affinity Prediction
    Yang, Xinxing
    Yang, Genke
    Chu, Jian
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (08) : 4544 - 4552
  • [35] MDF-DTA: A Multi-Dimensional Fusion Approach for Drug-Target Binding Affinity Prediction
    Ranjan, Amit
    Bess, Adam
    Alvin, Chris
    Mukhopadhyay, Supratik
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (13) : 4980 - 4990
  • [36] SSR-DTA: Substructure-aware multi-layer graph neural networks for drug-target binding affinity prediction
    Liu, Yuansheng
    Xia, Xinyan
    Gong, Yongshun
    Song, Bosheng
    Zeng, Xiangxiang
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 157
  • [37] A comprehensive review of the recent advances on predicting drug-target affinity based on deep learning
    Zeng, Xin
    Li, Shu-Juan
    Lv, Shuang-Qing
    Wen, Meng-Liang
    Li, Yi
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [38] Modality-DTA: Multimodality Fusion Strategy for Drug-Target Affinity Prediction
    Yang, Xixi
    Niu, Zhangming
    Liu, Yuansheng
    Song, Bosheng
    Lu, Weiqiang
    Zeng, Li
    Zeng, Xiangxiang
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (02) : 1200 - 1210
  • [39] Predicting drug-target binding affinity with cross-scale graph contrastive learning
    Wang, Jingru
    Xiao, Yihang
    Shang, Xuequn
    Peng, Jiajie
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)
  • [40] GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity
    Bae, Haelee
    Nam, Hojung
    BIOMEDICINES, 2023, 11 (01)