Explainable Machine-Learning Model for Prediction of In-Hospital Mortality in Septic Patients Requiring Intensive Care Unit Readmission

被引:0
作者
Chang Hu
Lu Li
Yiming Li
Fengyun Wang
Bo Hu
Zhiyong Peng
机构
[1] Zhongnan Hospital of Wuhan University,Department of Critical Care Medicine
[2] Clinical Research Center of Hubei Critical Care Medicine,Jiangsu Provincial Key Laboratory of Critical Care Medicine
[3] Southeast University,undefined
来源
Infectious Diseases and Therapy | 2022年 / 11卷
关键词
Explainable artificial intelligence; Machine learning; Random Forest; Sepsis; Mortality;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1695 / 1713
页数:18
相关论文
共 50 条
  • [21] An explainable machine learning algorithm for risk factor analysis of in-hospital mortality in sepsis survivors with ICU readmission
    Jiang, Zhengyu
    Bo, Lulong
    Xu, Zhenhua
    Song, Yubing
    Wang, Jiafeng
    Wen, Pingshan
    Wan, Xiaojian
    Yang, Tao
    Deng, Xiaoming
    Bian, Jinjun
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 204 (204)
  • [22] Prediction of Mortality in Surgical Intensive Care Unit Patients Using Machine Learning Algorithms
    Yun, Kyongsik
    Oh, Jihoon
    Hong, Tae Ho
    Kim, Eun Young
    FRONTIERS IN MEDICINE, 2021, 8
  • [23] Using Machine Learning to Develop and Validate an In-Hospital Mortality Prediction Model for Patients with Suspected Sepsis
    Chao, Hsiao-Yun
    Wu, Chin-Chieh
    Singh, Avichandra
    Shedd, Andrew
    Wolfshohl, Jon
    Chou, Eric H.
    Huang, Yhu-Chering
    Chen, Kuan-Fu
    BIOMEDICINES, 2022, 10 (04)
  • [24] Development and deployment of interpretable machine-learning model for predicting in-hospital mortality in elderly patients with acute kidney disease
    Li, Mingxia
    Zhuang, Qinghe
    Zhao, Shuangping
    Huang, Li
    Hu, Chenghuan
    Zhang, Buyao
    Hou, Qinlan
    RENAL FAILURE, 2022, 44 (01) : 1886 - 1896
  • [25] PROGNOSTIC ACCURACY OF MACHINE LEARNING MODELS FOR IN-HOSPITAL MORTALITY AMONG CHILDREN WITH PHOENIX SEPSIS ADMITTED TO THE PEDIATRIC INTENSIVE CARE UNIT
    Moore, Ronald
    Chanci, Daniela
    Brown, Stephanie
    Ripple, Michael J.
    Bishop, Natalie R.
    Grunwell, Jocelyn
    Kamaleswaran, Rishikesan
    SHOCK, 2025, 63 (01): : 80 - 87
  • [26] Machine-learning models for prediction of sepsis patients mortality
    Bao, C.
    Deng, F.
    Zhao, S.
    MEDICINA INTENSIVA, 2023, 47 (06) : 315 - 325
  • [27] Machine learning in the prediction of in-hospital mortality in patients with first acute myocardial infarction
    Zhu, Xiaoli
    Xie, Bojian
    Chen, Yijun
    Zeng, Hanqian
    Hu, Jinxi
    CLINICA CHIMICA ACTA, 2024, 554
  • [28] Early diagnosis of bloodstream infections in the intensive care unit using machine-learning algorithms
    Roimi, Michael
    Neuberger, Ami
    Shrot, Anat
    Paul, Mical
    Geffen, Yuval
    Bar-Lavie, Yaron
    INTENSIVE CARE MEDICINE, 2020, 46 (03) : 454 - 462
  • [29] Machine Learning-Based Mortality Prediction for Acute Gastrointestinal Bleeding Patients Admitted to Intensive Care Unit
    Zhou Liu
    Liang Zhang
    Gui-jun Jiang
    Qian-qian Chen
    Yan-guang Hou
    Wei Wu
    Muskaan Malik
    Guang Li
    Li-ying Zhan
    Current Medical Science, 2025, 45 (1) : 70 - 81
  • [30] Machine Learning for Early Prediction of Sepsis in Intensive Care Unit (ICU) Patients
    Alanazi, Abdullah
    Aldakhil, Lujain
    Aldhoayan, Mohammed
    Aldosari, Bakheet
    MEDICINA-LITHUANIA, 2023, 59 (07):