A stabilized P1/P1 finite element for the mechanical analysis of solid metals

被引:0
|
作者
E. Feulvarch
H. Amin El Sayed
J.-C. Roux
J.-M. Bergheau
机构
[1] University Lyon,
[2] ENISE,undefined
[3] LTDS,undefined
[4] UMR 5513 CNRS,undefined
关键词
Finite element; Solid mechanics; Mixed formulation; Pressure stabilization;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to propose a stabilized finite element P1/ P1 and to show that it is well suited for the finite-strain analysis of solid metals in the context of large von Mises elasto-viscoplastic or elasto-plastic transformations. The first part of this paper is dedicated to the finite element formulation which is detailed for an elasto-viscoplastic model problem. Then, a new stabilized formulation is proposed for the pressure solution. In the last part, examples are presented to show the relevance of the finite element P1/ P1 developed.
引用
收藏
页码:3 / 14
页数:11
相关论文
共 50 条
  • [1] A stabilized P1/P1 finite element for the mechanical analysis of solid metals
    Feulvarch, E.
    El Sayed, H. Amin
    Roux, J. -C.
    Bergheau, J. -M.
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2017, 10 (01) : 3 - 14
  • [2] Superconvergence of the stable P1 - P1 finite element pair for Stokes problem
    Zhang, Tie
    Tang, Lixin
    CALCOLO, 2016, 53 (01) : 35 - 49
  • [3] A stable P1/P1 finite element for finite strain von Mises elasto-plasticity
    Feulvarch, E.
    Roux, J. -C.
    Bergheau, J. -M.
    Gilles, P.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 324 : 537 - 545
  • [4] Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition
    Takahito Kashiwabara
    Issei Oikawa
    Guanyu Zhou
    Numerische Mathematik, 2016, 134 : 705 - 740
  • [5] Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition
    Kashiwabara, Takahito
    Oikawa, Issei
    Zhou, Guanyu
    NUMERISCHE MATHEMATIK, 2016, 134 (04) : 705 - 740
  • [6] Gromov-Witten theory of P1 x P1 x P1
    Karp, Dagan
    Ranganathan, Dhruv
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (08) : 3000 - 3009
  • [7] On the Hilbert functions of sets of points in P1 x P1 x P1
    Guardo, Elena
    Van Tuyl, Adam
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2015, 159 (01) : 115 - 123
  • [8] The stability manifolds of P1 and local P1
    Bertram, Aaron
    Marcus, Steffen
    Wang, Jie
    HODGE THEORY AND CLASSICAL ALGEBRAIC GEOMETRY, 2015, 647 : 1 - 17
  • [9] ON P1 NONCONFORMING FINITE ELEMENT APROXIMATION FOR THE SIGNORINI PROBLEM
    Li, Mingxia
    Hua, Dongying
    Lian, Hairong
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (02): : 2029 - 2045
  • [10] Convergence of Stabilized P1 Finite Element Scheme for Time Harmonic Maxwell's Equations
    Asadzadeh, M.
    Beilina, Larisa
    MATHEMATICAL AND NUMERICAL APPROACHES FOR MULTI-WAVE INVERSE PROBLEMS, CIRM, 2020, 328 : 33 - 43