Spreading Speeds of Time-Dependent Partially Degenerate Reaction-Diffusion Systems

被引:0
|
作者
Jia Liu
机构
[1] Chang’an University,School of Science
来源
Chinese Annals of Mathematics, Series B | 2022年 / 43卷
关键词
Partially degenerate; Reaction-diffusion system; Time dependent; Spreading speed; 35K65; 35K57; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the spreading speeds of time dependent partially degenerate reaction-diffusion systems with monostable nonlinearity. By using the principal Lyapunov exponent theory, the author first proves the existence, uniqueness and stability of spatially homogeneous entire positive solution for time dependent partially degenerate reaction-diffusion system. Then the author shows that such system has a finite spreading speed interval in any direction and there is a spreading speed for the partially degenerate system under certain conditions. The author also applies these results to a time dependent partially degenerate epidemic model.
引用
收藏
页码:79 / 94
页数:15
相关论文
共 50 条
  • [31] Bifurcation Analysis of a Reaction-Diffusion Rumor Spreading Model with Nonsmooth Control
    Zhu, Linhe
    Zheng, Wenxin
    Zhang, Xuebing
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (08):
  • [32] Time-delayed finite difference reaction-diffusion systems with nonquasimonotone functions
    Wang, YM
    Pao, CV
    NUMERISCHE MATHEMATIK, 2006, 103 (03) : 485 - 513
  • [33] Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems
    Gafiychuk, V.
    Datsko, B.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) : 1101 - 1107
  • [34] INSTABILITY OF PLANAR INTERFACES IN REACTION-DIFFUSION SYSTEMS
    TANIGUCHI, M
    NISHIURA, Y
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (01) : 99 - 134
  • [35] Intermittent boundary control for fixed-time stability of reaction-diffusion systems
    Jia, Wenwen
    Xie, Jingu
    Guo, Haihua
    Wu, Yongbao
    CHAOS SOLITONS & FRACTALS, 2024, 181
  • [36] Global existence for quadratic systems of reaction-diffusion
    Desvillettes, Laurent
    Fellner, Klemens
    Pierre, Michel
    Vovelle, Julien
    ADVANCED NONLINEAR STUDIES, 2007, 7 (03) : 491 - 511
  • [37] Bifurcation Characteristics of Fractional Reaction-Diffusion Systems
    Datsko, Bohdan
    Gafiychuk, Vasyl
    Luchko, Yuri
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 290 - 297
  • [38] Boundary control for a class of reaction-diffusion systems
    Si Y.-C.
    Xie C.-K.
    Zhao N.
    International Journal of Automation and Computing, 2018, 15 (1) : 94 - 102
  • [39] Stabilization strategies for some reaction-diffusion systems
    Anita, Sebastian
    Langlais, Michel
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) : 345 - 357
  • [40] A VIABILITY RESULT FOR SEMILINEAR REACTION-DIFFUSION SYSTEMS
    Burlica, Monica
    Rosu, Daniela
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2008, 54 (02): : 361 - 382