W-Entropy, Super Perelman Ricci Flows, and (K, m)-Ricci Solitons

被引:0
作者
Songzi Li
Xiang-Dong Li
机构
[1] Renmin University of China,School of Mathematics
[2] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
[3] University of Chinese Academy of Sciences,School of Mathematical Sciences
来源
The Journal of Geometric Analysis | 2020年 / 30卷
关键词
-entropy; Witten Laplacian; (; , ; )-condition; (; , ; )-Ricci solitons; (; , ; )-super Perelman Ricci flows; (; , ; )-Perelman Ricci flow; Gaussian solitons; Primary 53C44; 58J35; Secondary 60J60; 60H30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove a characterization of (K,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K, \infty )$$\end{document}-super Perelman Ricci flows by functional inequalities and gradient estimate for the heat semigroup generated by the Witten Laplacian on manifolds equipped with time-dependent metrics and potentials. As a byproduct, we derive the Hamilton type dimension-free Harnack inequality on manifolds with (K,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K, \infty )$$\end{document}-super Perelman Ricci flows. Based on a new entropy differential inequality for the heat equation of the Witten Laplacian, we introduce a new W-entropy quantity and prove its monotonicity for the heat equation of the Witten Laplacian on complete Riemannian manifolds with the CD(K,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CD(K, \infty )$$\end{document}-condition and on compact manifolds with (K,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K, \infty )$$\end{document}-super Perelman Ricci flows. Our results characterize the (K,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K, \infty )$$\end{document}-Ricci solitons and the (K,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K, \infty )$$\end{document}-Perelman Ricci flows. We also prove an entropy differential inequality on (K, m)-super Perelman Ricci flows, which can be used to characterize the (K, m)-Ricci solitons and the (K, m)-Perelman Ricci flows. Finally, we show that the Gaussian-type solitons on Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^m$$\end{document} provide asymptotical rigidity models for the Wm,K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{m, K}$$\end{document}-entropy on manifolds with the CD(-K,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CD(-K, m)$$\end{document}-condition.
引用
收藏
页码:3149 / 3180
页数:31
相关论文
共 46 条
[1]  
Bakry D(1996)Lévy-Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator Invent. Math. 123 259-281
[2]  
Ledoux M(2006)A logarithmic Sobolev form of the Li-Yau parabolic inequality Rev. Mat. Iberoam. 22 683-702
[3]  
Bakry D(2011)Rigidity of quasi-Einstein metrics Differ. Geom. Appl. 29 93-100
[4]  
Ledoux M(1993)A matrix Harnack estimate for the heat equation Commun. Anal. Geom. 1 113-126
[5]  
Case J(2012)On the classification of warped product Einstein metrics Commun. Anal. Geom. 20 271-311
[6]  
Shu Y-J(1993)Ricci solitons on compact three-manifolds Differ. Geom. Appl. 3 301-307
[7]  
Wei G(1994)New examples of complete Ricci solitons Proc. Am. Math. Soc. 122 241-245
[8]  
Hamilton RS(2003)Compact Einstein warped product spaces with nonnegative scalar curvature Proc. Am. Math. Soc. 131 2573-2576
[9]  
He C(2009)Gradient estimate for Ann. Sci. Ecol. Norm. Sup. 42 1-36
[10]  
Petersen P(2005)-harmonic functions, J. Math. Pures Appl. 84 1295-1361