Approximation by Classical Orthogonal Polynomials with Weight in Spaces L2,γ(a,b) and Widths of Some Functional Classes

被引:0
作者
S. B. Vakarchuk
机构
[1] Alfred Nobel University,
来源
Russian Mathematics | 2019年 / 63卷
关键词
classical orthogonal polynomial; orthonormal polynomial system; best polynomial approximation; width; generalized modulus of continuity; majorant; Fourier coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate approximations of functions of classes W2r(Dγ;(a,b)), r = 2, 3, …, by classical orthogonal polynomials with a weight γ in the spaces L2,γ(a,b). We obtain upper and lower estimates for different widths on the classes W2r(Ωm,γ, Ψ; (a,b)), where r ∈ ℤ+, m ∈ ℕ, Ψ is a majorant, Ωm,γ is a generalized modulus of continuity of m-th order. We find the condition on majorant, which enable us to compute the exact values of widths, and give certain examples of these values. In all mentioned above classes we obtain bounds (including the least upper bounds) for the Fourier coefficients.
引用
收藏
页码:32 / 44
页数:12
相关论文
共 43 条
  • [1] Yakhnin VM(1960)Remainders of expansions into Fourier series in Jacobi polynomials for functions with satisfying Lipschiz condition Ukr. mathem. journ. 12 194-204
  • [2] Zhidkov GV(1969)-th derivatives DAN USSR 169 1002-1005
  • [3] Rafal’son SZ(1968)Constructive characteristics of certain class of non-periodic functions Izv. vuzov. Matem. 4 54-62
  • [4] Rafal’son SZ(1968)Average approximation of functions by Fourier-Jacobi sums Izv. vuzov. Matem. 7 78-84
  • [5] Froid G(1970)Average approximations of functions by Fourier-Hermite sums DAN USSR 191 293-294
  • [6] Motornyi VP(1973)Approximation with weight by algebraic polynomials on real axis Izv. AN USSR. Ser. matem. 37 135-147
  • [7] Halilova BA(1973)Average convergence of Fourier series in Legendre polynomials Izv. AN Azerb. SSR. Ser. phys.-tech. i matem. nauk 2 87-94
  • [8] Jafarov AS(1977)Fourier-Jacobi coefficients and approximation of functions by ultra-spherical polynomials DAN USSR 236 288-291
  • [9] Badkov VM(1978)Averaged modules of continuity and certain their connections with best approximations UMN 33 51-106
  • [10] Fedorov VM(1984)Approximation properties of Fourier series on orthogonal poynomials Soviet Mathematics (Izv. VUZ. Matematika) 28 70-79