On Determinants of Laplacians on Compact Riemann Surfaces Equipped with Pullbacks of Conical Metrics by Meromorphic Functions

被引:0
作者
Victor Kalvin
机构
[1] Concordia University,Department of Mathematics and Statistics
来源
The Journal of Geometric Analysis | 2019年 / 29卷
关键词
Conical metric; Determinants of Laplacians; Moduli space; 58J52;
D O I
暂无
中图分类号
学科分类号
摘要
Let m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {m}}$$\end{document} be any conical (or smooth) metric of finite volume on the Riemann sphere CP1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}P^1$$\end{document}. On a compact Riemann surface X of genus g consider a meromorphic function f:X→CP1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: X\rightarrow {{\mathbb {C}}}P^1$$\end{document} such that all poles and critical points of f are simple and no critical value of f coincides with a conical singularity of m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {m}}$$\end{document} or {∞}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\infty \}$$\end{document}. The pullback f∗m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^*{\mathsf {m}}$$\end{document} of m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {m}}$$\end{document} under f has conical singularities of angles 4π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\pi $$\end{document} at the critical points of f and other conical singularities that are the preimages of those of m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {m}}$$\end{document}. We study the ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}-regularized determinant Det′ΔF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Det}}^\prime \Delta _F$$\end{document} of the (Friedrichs extension of) Laplace–Beltrami operator on (X,f∗m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f^*{\mathsf {m}})$$\end{document} as a functional on the moduli space of pairs (X, f) and obtain an explicit formula for Det′ΔF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Det}}^\prime \Delta _F$$\end{document}.
引用
收藏
页码:785 / 798
页数:13
相关论文
共 40 条
  • [1] Aurell E(1994)On functional determinants of Laplacians in polygons and simplicial complexes Comm. Math. Phys. 165 233-259
  • [2] Salomonson P(1985)Regular singular asymptotics Adv. Math. 58 133-148
  • [3] Brüning J(1987)The resolvent expansion for second order regular singular operators JFA 73 369-429
  • [4] Seeley R(1986)On determinants of Laplacians on Riemann surfaces Commun. Math. Phys. 104 537-545
  • [5] Brüning J(1988)Determinants of Laplacians on surfaces of finite volume Comm. Math. Phys. 119 443-451
  • [6] Seeley R(2013)Krein formula and J. Geom. Anal. 23 1498-1529
  • [7] D’Hoker E(2017)-matrix for Euclidean surfaces with conical singularities Proc. Am. Math. Soc. 145 3915-3928
  • [8] Phong DH(2016)Isospectrality, comparison formulas for determinants of Laplacian and flat metrics with non-trivial holonomy Commun. Math. Phys. 343 563-600
  • [9] Efrat I(2017)Spectral determinants on Mandelstam diagrams J. Phys. A 50 234003-100
  • [10] Hillairet L(2009)Lowest Landau level on a cone and zeta determinants J. Differ. Geom. 82 35-96