Numerical approaches to spacetime singularities

被引:116
作者
Berger B.K. [1 ,2 ]
机构
[1] Physics Department, Oakland University, Rochester
[2] Physics Division, National Science Foundation, Arlington, VA 22230
关键词
Black Hole; Naked Singularity; Cosmic Censorship; Adaptive Mesh Refinement; Cauchy Horizon;
D O I
10.12942/lrr-2002-1
中图分类号
学科分类号
摘要
This Living Review updates a previous version [25] which is itself an update of a review article [31]. Numerical exploration of the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.
引用
收藏
相关论文
共 291 条
[1]  
Abrahams A.M., Evans C.R., Critical Behavior and Scaling in Vacuum Axisymmetric Gravitational Collapse, Phys. Rev. Lett., 70, pp. 2980-2983, (1993)
[2]  
Abrahams A.M., Heiderich K.R., Shapiro S.L., Teukolsky S.A., Vacuum Initial Data, Singularities, and Cosmic Censorship, Phys. Rev. D, 46, pp. 2452-2463, (1992)
[3]  
Andersson L., Rendall A.D., Quiescent Cosmological Singularity, Commun. Math. Phys., 218, pp. 479-511, (2001)
[4]  
Andersson L., Et al., Quiescent Cosmological Singularity, (2000)
[5]  
Anninos P., Computational Cosmology: From the Early Universe to the Large Scale Structure, Living Rev. Relativity, 4, (2001)
[6]  
Anninos P., Centrella J., Matzner R.A., Nonlinear Wave Solutions to the Planar Vacuum Einstein Equations, Phys. Rev. D, 43, pp. 1825-1838, (1991)
[7]  
Anninos P., Centrella J., Matzner R.A., Numerical Methods for Solving the Planar Vacuum Einstein Equations, Phys. Rev. D, 43, pp. 1808-1824, (1991)
[8]  
Ashtekar A., Beetle C., Dreyer O., Fairhurs S., Krishnan B., Lewandowski J., Wisniewski J., Generic Isolated Horizons and Their Applications, Phys. Rev. Lett., 85, pp. 3564-3567, (2000)
[9]  
Ashtekar A., Et al., Generic Isolated Horizons and Their Applications, (2000)
[10]  
Banados M., Teitelboim C., Zanelli J., Black Hole in Three-Dimensional Spacetime, Phys. Rev. Lett., 69, pp. 1849-1851, (1992)