Hardy type inequalities with spherical derivatives

被引:3
作者
Bez, Neal [1 ]
Machihara, Shuji [1 ]
Ozawa, Tohru [2 ]
机构
[1] Saitama Univ, Fac Sci, Dept Math, Saitama 3388570, Japan
[2] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2020年 / 1卷 / 01期
关键词
Primary; 26D10; Secondary; 35A23; 46E35; PITTS INEQUALITY; RELLICH INEQUALITIES; SHARP CONSTANTS; REMAINDER; THEOREM;
D O I
10.1007/s42985-019-0001-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Hardy type inequality is presented with spherical derivatives in R n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>{n}$$\end{document} with n >= 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} in the framework of equalities. This clarifies the difference between contribution by radial and spherical derivatives in the improved Hardy inequality as well as nonexistence of nontrivial extremizers without compactness arguments.
引用
收藏
页数:15
相关论文
共 27 条
[1]   PITTS INEQUALITY AND THE UNCERTAINTY PRINCIPLE [J].
BECKNER, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1897-1905
[2]  
Beckner W, 2008, P AM MATH SOC, V136, P1871
[3]   Pitt's inequality and the fractional Laplacian: Sharp error estimates [J].
Beckner, William .
FORUM MATHEMATICUM, 2012, 24 (01) :177-209
[4]   Stability of Trace Theorems on the Sphere [J].
Bez, Neal ;
Jeavons, Chris ;
Ozawa, Tohru ;
Sugimoto, Mitsuru .
JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) :1456-1476
[5]   Extremisers for the trace theorem on the sphere [J].
Bez, Neal ;
Machihara, Shuji ;
Sugimoto, Mitsuru .
MATHEMATICAL RESEARCH LETTERS, 2016, 23 (03) :633-647
[6]   Applications of the Funk-Hecke theorem to smoothing and trace estimates [J].
Bez, Neal ;
Saito, Hiroki ;
Sugimoto, Mitsuru .
ADVANCES IN MATHEMATICS, 2015, 285 :1767-1795
[7]  
Birman MS, 1996, COMMUN PUR APPL MATH, V49, P967
[8]   Hardy Inequalities and Non-explosion Results for Semigroups [J].
Bogdan, Krzysztof ;
Dyda, Bartomiej ;
Kim, Panki .
POTENTIAL ANALYSIS, 2016, 44 (02) :229-247
[9]   Some new and short proofs for a class of Caffarelli-Kohn-Nirenberg type inequalities [J].
Costa, David G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :311-317
[10]  
Davies EB, 1998, MATH Z, V227, P511, DOI 10.1007/PL00004389