Algebraic degeneracy and Uniqueness Theorems for Holomorphic Curves with Infinite Growth Index from a Disc into Pn(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^n({\mathbb {C}})$$\end{document} Sharing 2n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n+2$$\end{document} Hyperplanes

被引:0
作者
Duc Quang Si
机构
[1] Hanoi National University of Education,Department of Mathematics
[2] Thang Long Institute of Mathematics and Applied Sciences,undefined
关键词
Nevanlinna theory; algebraic degeneracy; truncated multiplicity; hyperplane; Primary 32H04; Secondary 32A22; 32A35;
D O I
10.1007/s00009-021-01799-1
中图分类号
学科分类号
摘要
Let f and g be two holomorphic curves of a ball Δ(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (R)$$\end{document} into Pn(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^n({\mathbb {C}})$$\end{document} with finite growth index, and let H1,…,H2n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_1,\ldots ,H_{2n+2}$$\end{document} be 2n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n+2$$\end{document} hyperplanes in general position. In this paper, our first purpose is to show that if f and g have the same inverse images for all Hi(1≤i≤2n+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_i\ (1\le i\le 2n+2)$$\end{document} with multiplicities counted to level li\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_i$$\end{document} satisfying an explicitly estimate concerning cf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_f$$\end{document} and cg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_g$$\end{document}, then the map f×g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\times g$$\end{document} into Pn(C)×Pn(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^n({\mathbb {C}})\times {\mathbb {P}}^n({\mathbb {C}})$$\end{document} must be algebraically degenerated. Our second purpose is to prove that f=g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=g$$\end{document} if they share 2n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n+2$$\end{document} hyperplanes with some certain conditions (in particular, they share 2n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n+2$$\end{document} hyperplanes with multiplicities counted to level n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document}). Our results extend and improve the previous results for the case of holomorphic curve from C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document} on these directions.
引用
收藏
相关论文
共 8 条
[1]  
Fujimoto H(1975)The uniqueness problem of meromorphic maps into the complex projective space Nagoya Math. J. 5 1-23
[2]  
Fujimoto H(1999)Uniqueness problem with truncated multiplicities in value distribution theory, II Nagoya Math. J. 155 161-188
[3]  
Quang SD(2011)Unicity of meromorphic mappings sharing few hyperplanes Ann. Polon. Math. 102 255-270
[4]  
Quang SD(2014)Two meromorphic mappings sharing J. Math. Anal. Appl. 410 771-782
[5]  
Quynh LN(2020) hyperplanes regardless of multiplicity J. Math. Anal. Appl. 486 123888-undefined
[6]  
Quang SD(2019)Algebraic relation of two meromorphic mappings on a Kähler manifold having the same inverse images of hyperplanes Math. Annalen undefined undefined-undefined
[7]  
Ru M(undefined)The second main theorem in the hyperbolic case undefined undefined undefined-undefined
[8]  
Sibony N(undefined)undefined undefined undefined undefined-undefined