Non-Integrability of the Problem of a Rigid Satellite in Gravitational and Magnetic Fields

被引:0
作者
Andrzej J. Maciejewski
Maria Przybylska
机构
[1] University of Zielona Góra,Institute of Astronomy
[2] INRIA Projet CAFÉ,Toruń Centre for Astronomy
[3] 2004,undefined
[4] Nicholaus Copernicus University,undefined
来源
Celestial Mechanics and Dynamical Astronomy | 2003年 / 87卷
关键词
symmetric satellite; integrability; differential Galois; theory; Kovacic algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we analyse the integrability of a dynamical system describing the rotational motion of a rigid satellite under the influence of gravitational and magnetic fields. In our investigations we apply an extension of the Ziglin theory developed by Morales-Ruiz and Ramis. We prove that for a symmetric satellite the system does not admit an additional real meromorphic first integral except for one case when the value of the induced magnetic moment along the symmetry axis is related to the principal moments of inertia in a special way.
引用
收藏
页码:317 / 351
页数:34
相关论文
共 26 条
[1]  
Bogoyavlenskii O. I.(1985)Integrable cases of rigid-body dynamics and integrable systems on spheres Sn', Izv. Akad. Nauk SSSR Ser. Mat. 49 899-915
[2]  
de Brun F.(1983)Rotation kring fix punkt Öfvers. Kongl. Svenska Vetenskaps-Akad. Föhandl. 7 455-468
[3]  
Duval A.(1992)Kovačič's algorithm and its application to some families of special functions Appl. Algebra Engrg. Comm. Comput. 3 211-246
[4]  
Loday-Richaud M.(1986)An algorithm for solving second order linear homogeneous differential equations J. Symbolic Comput. 2 3-43
[5]  
Kovacic J. J.(1997)A simple model of the rotational motion of a rigid satellite around an oblate planet Acta Astronomica 47 387-398
[6]  
Maciejewski A. J.(2000)Kovalevskaya, Liapounov, Painlevé, Ziglin and the differential Galois theory Regul. Chaotic Dyn. 5 251-272
[7]  
Morales-Ruiz J. J.(2001)Galoisian obstructions to integrability of Hamiltonian systems I, II Meth. Appl. Anal. 8 33-95
[8]  
Morales-Ruiz J. J.(1890)Sur le problème des trois corps et les équations de la dynamique Acta Math. 13 1-270
[9]  
Ramis J. P.(1993)Liouvillian and algebraic solutions of second and third order linear differential equations J. Symbolic Comput. 16 37-73
[10]  
Poincaré H.(1995)Necessary conditions for Liouvillian solutions of (third order) linear differential equations Appl. Algebra Eng. Comm. Comput. 6 1-22