Iterative methods for zeros of a monotone variational inclusion in Hilbert spaces

被引:0
作者
Nguyen Buong
Pham Thi Thu Hoai
机构
[1] Duy Tan University,
[2] Vietnam Maritime University,undefined
来源
Calcolo | 2018年 / 55卷
关键词
Nonexpansive mapping; Fixed point; Variational inequality; Monotone variational inclusion; 47J05; 47H09; 49J30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce implicit and explicit iterative methods for finding a zero of a monotone variational inclusion in Hilbert spaces. As consequence, an improvement modification of an algorithm existing in literature is obtained. A numerical example is given for illustrating our algorithm.
引用
收藏
相关论文
共 60 条
[1]  
Boikanyo OA(2010)A proximal point algorithm converging strongly for general errors Optim. Lett. 4 635-641
[2]  
Morosanu G(1978)Produits infinis de resolvants Isr. J. Math. 29 329-345
[3]  
Brézis H(1974)A strong convergent iterative solution of J. Math. Anal. Appl. 48 114-126
[4]  
Lions PL(2011) for a maximal monotone operator J. Optim. Theory Appl. 151 513-528
[5]  
Bruck RE(2013) in Hilbert space J. Optim. Theory Appl 159 399-411
[6]  
Buong N(2016)An explicit iterative algorithm for a class of variational inequalities Numer. Algorithms 72 467-481
[7]  
Duong LTT(2016)Strong convergence to solutions for a class of variational inequalities in Banach spaces by implicit iteration methods J. Fixed Point Theory Appl. 18 519-532
[8]  
Buong N(2017)A new explicit iteration method for a class of variational inequalities Numer. Algorithms 76 783-798
[9]  
Phuong NTH(2008)A steepest-descent Krasnosel’skii–Mann algorithm for a class of variational inequalities in Banach spaces Numer. Funct. Anal. Optim. 29 987-1033
[10]  
Buong N(2004)Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces Optimization 53 475-504