Semi-classical Time-frequency Analysis and Applications

被引:0
作者
Elena Cordero
Maurice de Gosson
Fabio Nicola
机构
[1] Università di Torino,Dipartimento di Matematica
[2] University of Vienna,Faculty of Mathematics
[3] Politecnico di Torino,Dipartimento di Scienze Matematiche
来源
Mathematical Physics, Analysis and Geometry | 2017年 / 20卷
关键词
Time-frequency analysis; Semi-classical analysis; Gabor frames; Modulation spaces; Schrödinger equation; Quadratic potentials; 42B35; 42C15; 47G30; 81Q20;
D O I
暂无
中图分类号
学科分类号
摘要
This work represents a first systematic attempt to create a common ground for semi-classical and time-frequency analysis. These two different areas combined together provide interesting outcomes in terms of Schrödinger type equations. Indeed, continuity results of both Schrödinger propagators and their asymptotic solutions are obtained on ℏ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hbar $\end{document}-dependent Banach spaces, the semi-classical version of the well-known modulation spaces. Moreover, their operator norm is controlled by a constant independent of the Planck’s constant ℏ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hbar $\end{document}. The main tool in our investigation is the joint application of standard approximation techniques from semi-classical analysis and a generalized version of Gabor frames, dependent of the parameter ℏ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hbar $\end{document}. Continuity properties of more general Fourier integral operators (FIOs) and their sparsity are also investigated.
引用
收藏
相关论文
共 41 条
  • [1] Boggiatto P(2004)Generalized anti-Wick operators with symbols in distributional Sobolev spaces Integr. Equ. Oper. Theory 48 427-442
  • [2] Cordero E(2013)Wiener algebras of Fourier integral operators J. Math. Pures Appl. 99 219-233
  • [3] Gröchenig K(2014)Generalized metaplectic operators and the Schrödinger equation with a potential in the Sjöstrand class J. Math. Phys. 55 081506-339
  • [4] Cordero E(2010)Boundedness of Schrödinger type propagators on modulation spaces J. Fourier Anal. Appl. 16 311-21
  • [5] Gröchenig K(2015)Propagation of the gabor wave front set for Schrödinger equations with non-smooth potentials Rev. Math. Phys. 27 1550001-370
  • [6] Nicola F(2010)Time-frequency analysis of Fourier integral operators Commun. Pure Appl. Anal. 9 1-4821
  • [7] Rodino L(2009)Sparsity of Gabor representation of Schrödinger propagators Appl. Comput. Harmon. Anal. 26 357-1283
  • [8] Cordero E(2015)Schrödinger equation with rough hamiltonians Discrete Contin. Dyn. Syst. Ser. A 35 4805-221
  • [9] Gröchenig K(1986)Painless nonorthogonal expansions J. Math. Phys. 27 1271-463
  • [10] Nicola F(2015)Hamiltonian deformations of Gabor frames: first steps Appl. Comput. Harmon. Anal. 38 196-162