TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformed scattering happens within matrices

被引:0
作者
Vasudev Shyam
Yigit Yargic
机构
[1] Stanford University,Stanford Institute for Theoretical Physics and Department of Physics
[2] Microsoft Research,undefined
关键词
Field Theories in Lower Dimensions; Integrable Field Theories; Models of Quantum Gravity;
D O I
10.1007/JHEP04(2023)132
中图分类号
学科分类号
摘要
We show the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformation of two-dimensional quantum field theories is equivalent to replacing the spacetime dependence of the fields with dependence on the indices of infinitely large matrices. We show how this correspondence explains the CDD phase dressing of the S-matrix and the general formula for the deformation of arbitrary correlation functions. We also describe how the Moyal deformation of self-dual gravity is a TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformation of the theory described by the Chalmers-Siegel action, where the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformation is defined on the two-dimensional plane of interactions.
引用
收藏
相关论文
共 21 条
[1]  
Smirnov FA(2017)undefined Nucl. Phys. B 915 363-undefined
[2]  
Zamolodchikov AB(2008)undefined JHEP 09 131-undefined
[3]  
Grosse H(2011)undefined Commun. Math. Phys. 304 95-undefined
[4]  
Lechner G(2012)undefined JHEP 09 133-undefined
[5]  
Buchholz D(1996)undefined Phys. Rev. D 54 7628-undefined
[6]  
Lechner G(1992)undefined Class. Quant. Grav. 9 883-undefined
[7]  
Summers SJ(1975)undefined J. Math. Phys. 16 2395-undefined
[8]  
Dubovsky S(2023)undefined JHEP 01 092-undefined
[9]  
Flauger R(2022)undefined JHEP 12 011-undefined
[10]  
Gorbenko V(2020)undefined JHEP 04 190-undefined