Interplay between glutathione, Atx1 and copper: X-ray absorption spectroscopy determination of Cu(I) environment in an Atx1 dimer

被引:0
作者
David Poger
Clara Fillaux
Roger Miras
Serge Crouzy
Pascale Delangle
Elisabeth Mintz
Christophe Den Auwer
Michel Ferrand
机构
[1] CNRS Laboratoire de Chimie et Biologie des Métaux,School of Molecular and Microbial Sciences
[2] UMR 5249,undefined
[3] CEA Laboratoire de Chimie et Biologie des Métaux,undefined
[4] Université Joseph Fourier Grenoble,undefined
[5] CEA,undefined
[6] DSM,undefined
[7] INAC,undefined
[8] SCIB (UMR_E 3 CEA/UJF),undefined
[9] Laboratoire de Reconnaissance Ionique et de Chimie de Coordination,undefined
[10] CEA,undefined
[11] DEN,undefined
[12] DRCP,undefined
[13] SCPS,undefined
[14] Laboratoire de Conception des Architectures Moléculaires,undefined
[15] The University of Queensland,undefined
[16] St. Lucia,undefined
来源
JBIC Journal of Biological Inorganic Chemistry | 2008年 / 13卷
关键词
X-ray absorption spectroscopy; Metallochaperones; Metal transport; Copper; Glutathione;
D O I
暂无
中图分类号
学科分类号
摘要
X-ray absorption techniques have been used to characterise the primary coordination sphere of Cu(I) bound to glutathionate (GS−), to Atx1 and in Cu2I(GS−)2(Atx1)2, a complex recently proposed as the major form of Atx1 in the cytosol. In each complex, Cu(I) was shown to be triply coordinated. When only glutathione is provided, each Cu(I) is triply coordinated by sulphur atoms in the binuclear complex CuI2(GS−)5, involving bridging and terminal thiolates. In the presence of Atx1 and excess of glutathione, under conditions where CuI2(GS−)2(Atx1)2 is formed, each Cu(I) is triply coordinated by sulphur atoms. Given these constraints, there are two different ways for Cu(I) to bridge the Atx1 dimer: either both Cu(I) ions contribute to bridging the dimer, or only one Cu(I) ion is responsible for bridging, the other one being coordinated to two glutathione molecules. These two models are discussed as regards Cu(I) transfer to Ccc2a.
引用
收藏
页码:1239 / 1248
页数:9
相关论文
共 217 条
[1]  
Harris ZL(1996)undefined Am J Clin Nutr 63 836S-841S
[2]  
Gitlin JD(2000)undefined J Biol Chem 275 25057-25060
[3]  
O’Halloran TV(1989)undefined J Biol Chem 264 5598-5605
[4]  
Culotta VC(1998)undefined Dev Neurosci 20 401-407
[5]  
Freedman JH(1990)undefined J Biol Chem 265 11030-11034
[6]  
Ciriolo MR(1997)undefined Science 278 853-856
[7]  
Peisach J(2001)undefined Biochemistry 40 1528-1539
[8]  
Dringen R(2001)undefined J Biol Chem 276 8415-8426
[9]  
Hamprecht B(2000)undefined J Biol Chem 275 18611-18614
[10]  
Ciriolo MR(2004)undefined Biochem Biophys Res Commun 325 388-394