Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles

被引:0
作者
Pramod Warrier
Amyn Teja
机构
[1] Georgia Institute of Technology,School of Chemical & Biomolecular Engineering
来源
Nanoscale Research Letters | / 6卷
关键词
Thermal Conductivity; Silver Nanoparticles; Effective Thermal Conductivity; Size Dependence; Base Fluid;
D O I
暂无
中图分类号
学科分类号
摘要
A one-parameter model is presented for the thermal conductivity of nanofluids containing dispersed metallic nanoparticles. The model takes into account the decrease in thermal conductivity of metal nanoparticles with decreasing size. Although literature data could be correlated well using the model, the effect of the size of the particles on the effective thermal conductivity of the nanofluid could not be elucidated from these data. Therefore, new thermal conductivity measurements are reported for six nanofluids containing silver nanoparticles of different sizes and volume fractions. The results provide strong evidence that the decrease in the thermal conductivity of the solid with particle size must be considered when developing models for the thermal conductivity of nanofluids.
引用
收藏
相关论文
共 50 条
[31]   Thermal Conductivity of Nanofluids: Influence of Particle Shape [J].
E. D. Eidelman ;
A. Y. Vul .
Technical Physics Letters, 2023, 49 :246-249
[32]   Predicting the Thermal Conductivity of Nanofluids-Effect of Brownian Motion of Nanoparticles [J].
Murshed, S. M. Sohel ;
de Castro, C. A. Nieto .
JOURNAL OF NANOFLUIDS, 2012, 1 (02) :180-185
[33]   Nanoparticles Shape Effect on Thermal Conductivity of Nanofluids: A Molecular Dynamics Study [J].
Roni, Md. Rakibul Hasan ;
Morshed, A. K. M. M. ;
Tikadar, Amitav ;
Paul, Titan C. ;
Khan, Jamil A. .
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 8, 2019,
[34]   Effect of Nanolayer and Aggregation of Nanoparticles in Predicting Effective Thermal Conductivity of Nanofluids [J].
Chauhan, Deepti ;
Singhvi, Nilima .
JOURNAL OF NANOFLUIDS, 2014, 3 (04) :361-367
[35]   Thermal conductivity and viscosity models of metallic oxides nanofluids [J].
Alawi, Omer A. ;
Sidik, Nor Azwadi Che ;
Xian, Hong Wei ;
Kean, Tung Hao ;
Kazi, S. N. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 116 :1314-1325
[36]   Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids [J].
Gang Chen ;
Wenhua Yu ;
Dileep Singh ;
David Cookson ;
Jules Routbort .
Journal of Nanoparticle Research, 2008, 10 :1109-1114
[37]   Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids [J].
Chen, Gang ;
Yu, Wenhua ;
Singh, Dileep ;
Cookson, David ;
Routbort, Jules .
JOURNAL OF NANOPARTICLE RESEARCH, 2008, 10 (07) :1109-1114
[38]   The limiting behavior of the thermal conductivity of nanoparticles and nanofluids [J].
Teja, Amyn S. ;
Beck, Michael P. ;
Yuan, Yanhui ;
Warrier, Pramod .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (11)
[39]   On the thermal conductivity of nanofluids [J].
V. Ya. Rudyak ;
A. A. Belkin ;
E. A. Tomilina .
Technical Physics Letters, 2010, 36 :660-662
[40]   Numerical simulation of nanoparticles size/aspect ratio effect on thermal conductivity of nanofluids using lattice Boltzmann method [J].
Tahmooressi, Hamed ;
Kasaeian, Alibakhsh ;
Yavarinasab, Adel ;
Tarokh, Ali ;
Ghazi, Mahan ;
Hoorfar, Mina .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 120 (120)