We define and study an extended hyperbolic space which contains the hyperbolic space and de Sitter space as subspaces and which is obtained as an analytic continuation of the hyperbolic space. The construction of the extended space gives rise to a complex valued geometry consistent with both the hyperbolic and de Sitter space. Such a construction inspires a new concrete insight for the study of the hyperbolic geometry and Lorentzian geometry as a unified object. We also discuss the advantages of this new geometric model as well as some of its applications.
机构:
Aix Marseille Univ, CNRS, UMR 7373, Cent Marseille,I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, FranceAix Marseille Univ, CNRS, UMR 7373, Cent Marseille,I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
Bommier-Hato, Helene
Englis, Miroslav
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
Silesian Univ, Math Inst, Opava 74601, Czech RepublicAix Marseille Univ, CNRS, UMR 7373, Cent Marseille,I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
Englis, Miroslav
Youssfi, El-Hassan
论文数: 0引用数: 0
h-index: 0
机构:
Aix Marseille Univ, CNRS, UMR 7373, Cent Marseille,I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, FranceAix Marseille Univ, CNRS, UMR 7373, Cent Marseille,I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, France