Mixed hyperbolic/trigonometric non-stationary subdivision scheme

被引:0
作者
R. Fakhar
A. Lamnii
M. -Y. Nour
A. Zidna
机构
[1] Univ. Sultan Moulay Slimane,Laboratory LS3M
[2] Univ. Hassan 1st,Laboratory MISI, Faculty of Sciences and Technology
[3] Université Lorraine,LGIPM
来源
Mathematical Sciences | 2022年 / 16卷
关键词
Non-stationary subdivision scheme; Asymptotic equivalence; Mixed hyperbolic/trigonometric curves; Tensor-product;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes two novel families of non-stationary subdivision schemes with a shape parameter of hierarchically and efficiently generating mixed hyperbolic/trigonometric curves of order 3 and 4. An analysis of convergence and smoothness of the proposed schemes is established by using the asymptotic equivalence method. This paper also discusses the bivariate tensor-product subdivision scheme for the surface modeling on the regular meshes. The numerical results they produce are very encouraging. In this context, the performance of our algorithms has been exposed by considering examples, which illustrate how the shape parameter and the control points are assigned to reproduce such analytic curves and surfaces using tensor-product notion.
引用
收藏
页码:149 / 162
页数:13
相关论文
共 35 条
[1]  
Brilleaud M(2012)Mixed hyperbolic/trigonometric spaces for design Comput. Math. Appl. 64 2459-2477
[2]  
Mazure M-L(1991)Stationary subdivision Memoirs of the American Mathematical Society 93 346-349
[3]  
Cavaretta AS(1978)Recursively generated B-spline surfaces on arbitrary topological meshes Comput. Aided Des. 10 350-355
[4]  
Dahmen W(1974)An algorithm for high speed curve generation Comput. Graph. Image Process. 3 346-349
[5]  
Micchelli CA(2007)An approximating ${\cal{C}}^2$ non-stationary subdivision scheme Geometric Modelling and Imaging 07 7695-2901
[6]  
Catmull E(2009)Subdivision schemes in geometric modelling Comput. Aided Geom. Des. 26 810-821
[7]  
Clark J(2002)Analysis of asymptotically equivalent binary subdivision schemes Acta Numer. 11 73-144
[8]  
Chaikin GM(1995)A subdivision algorithm for trigonometric spline curves J. Math. Anal. Appl. 193 594-621
[9]  
Daniel S(2002)A family of non-stationary subdivision schemes reproducing exponential polynomials Comput. Aided Geom. Des. 19 71-88
[10]  
Shunmugaraj P(2013)From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms J. Math. Anal. Appl. 402 207-219