Classes of quantum codes derived from self-dual orientable embeddings of complete multipartite graphs

被引:0
作者
Avaz Naghipour
Mohammad Ali Jafarizadeh
机构
[1] University College of Nabi Akram,Department of Computer Engineering
[2] University of Tabriz,Department of Theoretical Physics and Astrophysics, Faculty of Physics
来源
Quantum Information Processing | 2017年 / 16卷
关键词
Quantum codes; Embedding; Orientable; Self-dual; Complete graphs; Complete bipartite graphs; Complete tripartite graphs;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents four classes of binary quantum codes with minimum distance 3 and 4, namely Class-I, Class-II, Class-III and Class-IV. The classes Class-I and Class-II are constructed based on self-dual orientable embeddings of the complete graphs K4r+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{4r+1}$$\end{document} and K4s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{4s}$$\end{document} and by current graphs and rotation schemes. The parameters of two classes of quantum codes are [[2r(4r+1),2r(4r-3),3]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[2r(4r+1),2r(4r-3),3]]$$\end{document} and [[2s(4s-1),2(s-1)(4s-1),3]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[2s(4s-1),2(s-1)(4s-1),3]]$$\end{document}, respectively, where r≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 1$$\end{document} and s≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 2$$\end{document}. For these quantum codes, the code rate approaches 1 as r and s tend to infinity. The Class-III with minimum distance 4 is constructed by using self-dual embeddings of complete bipartite graphs. The parameters of this class are rs,(r-2)(s-2)2,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ \left[ rs,\frac{(r-2)(s-2)}{2},4\right] \right] $$\end{document}, where r and s are both divisible by 4. The proposed Class-IV is the minimum distance 3 and code length n=(2r+1)s2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=(2r+1)s^{2}$$\end{document}. This class is constructed based on self-dual embeddings of complete tripartite graph Krs,s,s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{rs,s,s}$$\end{document}, and its parameters are [[(2r+1)s2,(rs-2)(s-1),3]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[(2r+1)s^{2},(rs-2)(s-1),3]]$$\end{document}, where r≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 2$$\end{document} and s≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 2$$\end{document}.
引用
收藏
相关论文
共 34 条
[1]  
Shor PW(1995)Scheme for reducing decoherence in quantum memory Phys. Rev. A 2 2493-2496
[2]  
Calderbank AR(1996)Good quantum error-correcting codes exist Phys. Rev. A 54 1098-1105
[3]  
Shor PW(1996)Error correcting codes in quantum theory Phys. Rev. Lett. 77 793-797
[4]  
Steane AM(1996)Class of quantum error-correcting codes saturating the quantum Hamming bound Phys. Rev. A 54 1862-30
[5]  
Gottesman D(2003)Fault-tolerant quantum computation by anyons Ann. Phys. 303 2-332
[6]  
Kitaev AYu(2001)Projective plane and planar quantum codes Found. Comput. Math. 1 325-1336
[7]  
Freedman MH(2004)Binary construction of quantum codes of minimum distance three and four IEEE Trans. Inf. Theory 50 1331-226
[8]  
Meyer DA(2009)On toric quantum codes Int. J. Pure Appl. Math. 50 221-0970
[9]  
Li R(2010)New classes of topological quantum codes associated with self-dual, quasi self-dual and denser tessellations Quantum Inf. Comput. 10 0956-5185
[10]  
Li X(2013)All the stabilizer codes of distance 3 IEEE Trans. Inform. Theory 59 5179-4066