Canonical metrics on generalized Cartan-Hartogs domains

被引:0
作者
Yihong Hao
机构
[1] Northwest University,Department of Mathematics
来源
Chinese Annals of Mathematics, Series B | 2016年 / 37卷
关键词
Canonical metric; Extremal metric; Comparison theorem; Generalized Cartan-Hartogs domains; 32A07; 32F45; 32Q15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the author considers a class of bounded pseudoconvex domains, i.e., the generalized Cartan-Hartogs domains Ω(μ, m). The first result is that the natural Kähler metric gΩ(μ, m) of Ω(μ, m) is extremal if and only if its scalar curvature is a constant. The second result is that the Bergman metric, the Kähler-Einstein metric, the Carathéodary metric, and the Koboyashi metric are equivalent for Ω(μ, m).
引用
收藏
页码:357 / 366
页数:9
相关论文
共 35 条
[1]  
Arazy J.(1995)A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains Contemp. Math. 185 7-65
[2]  
Calabi E.(1982)Extremal Kähler metrics, Seminar on Differential Geometry Ann. of Math. Stud. 102 259-290
[3]  
Cartan E.(1935)Sur les domaines born`es homogenes de l’espace de n variables complexes Abh. Math. Sem. Univ. Hamburg 11 116-162
[4]  
Chang S. C.(2002)On the existence of nontrivial extremal metrics on complete noncompact surfaces Math. Ann. 324 465-490
[5]  
Chen X.(2005)Uniqueness of extremal Kähler metrics C. R. Math. Acad. Sci. Paris, Ser. 340 287-290
[6]  
Tian G.(1980)On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation Comm. Pure Appl. Math. 33 507-544
[7]  
Cheng S. Y.(2012)Some properties of squeezing functions on bounded domains Pacific J. Math. 257 319-341
[8]  
Yau S. T.(2001)Scalar curvature and projective embeddings I, J. Differential Geom. 59 479-522
[9]  
Deng F.(2005)Lower bounds on the Calabi functional J. Differential Geom. 70 453-472
[10]  
Guan Q.(1995)Existence of extremal metrics on compact almost homogeneous Kähler manifolds with two ends Trans. Amer. Math. Soc. 347 2255-2262