Counting exceptional points for rational numbers associated to the Fibonacci sequence

被引:0
作者
Charles L. Samuels
机构
[1] Christopher Newport University,Department of Mathematics
来源
Periodica Mathematica Hungarica | 2017年 / 75卷
关键词
Mahler measure; Metric Mahler measure; Fibonacci numbers;
D O I
暂无
中图分类号
学科分类号
摘要
If α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is a non-zero algebraic number, we let m(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(\alpha )$$\end{document} denote the Mahler measure of the minimal polynomial of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} over Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z$$\end{document}. A series of articles by Dubickas and Smyth, and later by the author, develop a modified version of the Mahler measure called the t-metric Mahler measure, denoted mt(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_t(\alpha )$$\end{document}. For fixed α∈Q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \overline{\mathbb Q}$$\end{document}, the map t↦mt(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\mapsto m_t(\alpha )$$\end{document} is continuous, and moreover, is infinitely differentiable at all but finitely many points, called exceptional points for α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. It remains open to determine whether there is a sequence of elements αn∈Q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _n\in \overline{\mathbb Q}$$\end{document} such that the number of exceptional points for αn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _n$$\end{document} tends to ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. We utilize a connection with the Fibonacci sequence to formulate a conjecture on the t-metric Mahler measures. If the conjecture is true, we prove that it is best possible and that it implies the existence of rational numbers with as many exceptional points as we like. Finally, with some computational assistance, we resolve various special cases of the conjecture that constitute improvements to earlier results.
引用
收藏
页码:221 / 243
页数:22
相关论文
共 18 条
  • [1] Borwein P(2007)Lehmer’s problem for polynomials with odd coefficients Ann. Math. 166 347-366
  • [2] Dobrowolski E(1852)Mémoire sur les nombres premiers J. Math. Pures Appl. 1 366-390
  • [3] Mossinghoff MJ(1979)On a question of Lehmer and the number of irreducible factors of a polynomial Acta Arith. 34 391-401
  • [4] Chebyshev P(2001)On the metric Mahler measure J. Number Theory 86 368-387
  • [5] Dobrowolski E(2003)On metric heights Period. Math. Hung. 46 135-155
  • [6] Dubickas A(2012)The Acta Math. Hung. 134 481-498
  • [7] Smyth CJ(1933)-metric Mahler measures of surds and rational numbers Ann. Math. 34 461-479
  • [8] Dubickas A(2011)Factorization of certain cyclotomic functions Can. Math. Bull. 54 739-747
  • [9] Smyth CJ(2010)The infimum in the metric Mahler measure J. Ramanujan Math. Soc. 25 433-456
  • [10] Jankauskas J(2011)A collection of metric Mahler measures J. Number Theory 131 1070-1088