Microstructural, Optical, and Electrical Properties of Sb2Se3 Films Fabricated by the CMBD Method for Solar Cells

被引:1
作者
Razykov T.M. [1 ]
Kuchkarov K.M. [1 ]
Ergashev B.A. [1 ]
Tursunkulov O.M. [1 ]
Olimov A. [1 ]
Isakov D. [1 ]
Makhmudov M. [1 ]
Pirimmatov M. [1 ]
机构
[1] Physical-Technical Institute SPA Physics–Sun, Academy of Sciences of the Republic of Uzbekistan, Tashkent
来源
Applied Solar Energy (English translation of Geliotekhnika) | 2022年 / 58卷 / 01期
关键词
absorption coefficient; CMBD; electrical conductivity; morphology; Sb[!sub]2[!/sub]Se[!sub]3[!/sub; structure; temperature; thin films; X-ray pattern;
D O I
10.3103/S0003701X22010157
中图分类号
学科分类号
摘要
Abstract—: High-quality crystalline Sb2Se3 films are fabricated by the chemical molecular beam deposition (CMBD) method from separate sources of Sb2Se3 binary compound and Se element, at a substrate temperature of 500°C. The effect of temperature of the selenium source on the morphological, structural, optical, and electrical properties of Sb2Se3 films has been studied. Based on the scanning electron microscope images and XRD analysis data, it is revealed that all films have a polycrystalline orthorhombic structure, and the crystallite sizes are 5–10 μm. The electrical conductivities of the films vary within 1.03 × 10–5 to 4.13 × 10–5 (Ω cm)–1 depending on the ratio of Sb/Se atomic concentration. These results determine the growth of high-quality Sb2Se3 thin films from separate sources of the Sb2Se3 binary compound and the Se element at a substrate temperature of 500°C and are the main factors for obtaining efficient solar cells based on Sb2Se3 using the CMBD method. © 2022, Allerton Press, Inc.
引用
收藏
页码:21 / 27
页数:6
相关论文
共 31 条
[1]  
Green M.A., Dunlop E.D., Hohl-Ebinger J., Yoshita M., Kopidakis N., Hao X., Solar cell efficiency tables (version 56), Prog. Photovoltaics Res. Appl., 28, pp. 629-638, (2020)
[2]  
Fraunhofer I.S.E., Photovoltaics Report.
[3]  
Ruhle S., Tabulated values of the Shockley–Queisser limit for single junction solar cells, Sol. Energy, 130, pp. 139-147, (2016)
[4]  
Razykov T.M., Ferekides C.S., Solar photovoltaic electricity: Current status and future prospects, Sol. Energy, 85, pp. 1580-1608, (2011)
[5]  
Dhere N.G., Scale-up issues of CIGS thin film PV modules, Sol. Energy Mater. Sol. Cells, 95, pp. 277-280, (2011)
[6]  
Yun C., Chunrui W., Bin L., Fabrication and characterization of Cu<sub>2</sub>ZnSnS<sub> x</sub>Se<sub>4 –</sub><sub>x</sub> solid solution nanocrystallines, Jpn. J. Appl. Phys., 50, (2011)
[7]  
Wang X., Tang R., Wu C., Development of antimony sulfide–selenide Sb<sub>2</sub>(S, Se)<sub>3</sub>-based solar cells, J. Energy Chem., 27, pp. 713-721, (2018)
[8]  
Wang X., Tang R., Wu C., Development of antimony sulfide–selenide Sb<sub>2</sub>(S, Se)<sub>3</sub>-based solar cells, J. Energy Chem., 27, pp. 713-721, (2018)
[9]  
Mavlonov A., Razykov T., Raziq F., A review of Sb<sub>2</sub>Se<sub>3</sub> photovoltaic absorber materials and thin-film solar cells, Sol. Energy, 201, pp. 227-246, (2020)
[10]  
Mamta S., A review on properties, applications, and deposition techniques of antimony selenide, Sol. Energy Mater. Sol. Cells, 230, (2021)