A bound on the k-domination number of a graph

被引:0
作者
Lutz Volkmann
机构
[1] RWTH Aachen University,Lehrstuhl II für Mathematik
来源
Czechoslovak Mathematical Journal | 2010年 / 60卷
关键词
domination; -domination number; -free graphs; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with vertex set V(G), and let k ⩾ 1 be an integer. A subset D ⊆ V(G) is called a k-dominating set if every vertex υ ∈ V(G)-D has at least k neighbors in D. The k-domination number γk(G) of G is the minimum cardinality of a k-dominating set in G. If G is a graph with minimum degree δ(G) ⩾ k + 1, then we prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma _{k + 1} (G) \leqslant \frac{{|V(G)| + \gamma _k (G)}} {2}. $$\end{document}. In addition, we present a characterization of a special class of graphs attaining equality in this inequality.
引用
收藏
页码:77 / 83
页数:6
相关论文
共 25 条
[1]  
Blidia M.(2006)Bounds of the 2-domination number of graphs Utilitas Math. 71 209-216
[2]  
Chellali M.(1990)A note on the Int. J. Math. Sci. 13 205-206
[3]  
Volkmann L.(1998)-domination number of a graph Discrete Math. 185 239-243
[4]  
Caro Y.(1985)Upper bounds for J. Graph Theory 9 533-534
[5]  
Roditty Y.(2008)-domination number of graphs J. Graph Theory 57 33-40
[6]  
Chen B.(1985)An upper bound for the Period. Math. Hungar. 16 287-293
[7]  
Zhou S.(2009)-domination number of a graph Discrete Appl. Math. 157 1634-1639
[8]  
Cockayne E. J.(1982)On J. Graph Theory 6 23-32
[9]  
Gamble B.(1993)-domination and minimum degree in graphs J. Graph Theory 17 315-323
[10]  
Shepherd B.(1996)On graphs having domination number half their order Czech. Math. J. 46 489-499