Congruences Concerning Values of the Modular Functions jn

被引:0
作者
Gwynneth H. Coogan
机构
[1] University of Wisconsin,Department of Mathematics
来源
The Ramanujan Journal | 2005年 / 10卷
关键词
modular forms; Hecke operators; -function; σ function;
D O I
暂无
中图分类号
学科分类号
摘要
The j-function j(z) = q−1+ 744 + 196884q + ⋅s plays an important role in many problems. In [7], Zagier, presented an interesting series of functions obtained from the j-function: jm(ζ) = (j(ζ) – 744)∨T0(m), where T0(m) is the usual m′th normalized weight 0 Hecke operator. In [3], Bruinier et al. show how this series of functions can be used to describe all meromorphic modular forms on SL2(ℤ). In this note we use these functions and basic notions about modular forms to determine previously unidentified congruence relations between the coefficients of Eisenstein series and the j-function.
引用
收藏
页码:43 / 50
页数:7
相关论文
共 9 条
[1]  
Asai T.(1997)Zeros of certain modularfunctions and an application Comm. Math. Univ. St. Pauli 46 93-101
[2]  
Kaneko M.(2002)Formulas of Ramanujan for the power series coefficients of certainquotients of Eisenstein series IRMN 21 1077-1109
[3]  
Ninomiya H.(1970)On the zeros of Eisenstein series Bull. London Math. Soc 2 169-170
[4]  
Berndt B.(1974)Divisibilité des coefficients des formes modulaires de poids entier C.R. Acad. Sci.Paris ser A 279 679-682
[5]  
Bialek P.(undefined)undefined undefined undefined undefined-undefined
[6]  
Yee A.J.(undefined)undefined undefined undefined undefined-undefined
[7]  
Rankin F.K.C.(undefined)undefined undefined undefined undefined-undefined
[8]  
Swinnerton-Dyer H.P.F.(undefined)undefined undefined undefined undefined-undefined
[9]  
Serre J.-P.(undefined)undefined undefined undefined undefined-undefined